// Copyright (c) 2012-2013 The Cryptonote developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. // Modified for CPUminer by Lucas Jones #include "cpuminer-config.h" #include "miner.h" #include "crypto/oaes_lib.h" #include "crypto/c_keccak.h" #include "crypto/c_groestl.h" #include "crypto/c_blake256.h" #include "crypto/c_jh.h" #include "crypto/c_skein.h" #include "crypto/int-util.h" #include "crypto/hash-ops.h" #if USE_INT128 #if __GNUC__ == 4 && __GNUC_MINOR__ >= 4 && __GNUC_MINOR__ < 6 typedef unsigned int uint128_t __attribute__ ((__mode__ (TI))); #else typedef __uint128_t uint128_t; #endif #endif #define MEMORY (1 << 21) /* 2 MiB */ #define ITER (1 << 20) #define AES_BLOCK_SIZE 16 #define AES_KEY_SIZE 32 /*16*/ #define INIT_SIZE_BLK 8 #define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE) #pragma pack(push, 1) union cn_slow_hash_state { union hash_state hs; struct { uint8_t k[64]; uint8_t init[INIT_SIZE_BYTE]; }; }; #pragma pack(pop) static void do_blake_hash(const void* input, size_t len, char* output) { blake256_hash((uint8_t*)output, input, len); } void do_groestl_hash(const void* input, size_t len, char* output) { groestl(input, len * 8, (uint8_t*)output); } static void do_jh_hash(const void* input, size_t len, char* output) { int r = jh_hash(HASH_SIZE * 8, input, 8 * len, (uint8_t*)output); assert(likely(SUCCESS == r)); } static void do_skein_hash(const void* input, size_t len, char* output) { int r = skein_hash(8 * HASH_SIZE, input, 8 * len, (uint8_t*)output); assert(likely(SKEIN_SUCCESS == r)); } extern int fast_aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey); extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey); extern int aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey); extern int fast_aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey); static void (* const extra_hashes[4])(const void *, size_t, char *) = { do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash }; // Credit to Wolf for optimizing this function static inline size_t e2i(const uint8_t* a) { return ((uint32_t *)a)[0] & 0x1FFFF0; } static inline void mul_sum_xor_dst(const uint8_t* a, uint8_t* c, uint8_t* dst) { uint64_t hi, lo = mul128(((uint64_t*) a)[0], ((uint64_t*) dst)[0], &hi) + ((uint64_t*) c)[1]; hi += ((uint64_t*) c)[0]; ((uint64_t*) c)[0] = ((uint64_t*) dst)[0] ^ hi; ((uint64_t*) c)[1] = ((uint64_t*) dst)[1] ^ lo; ((uint64_t*) dst)[0] = hi; ((uint64_t*) dst)[1] = lo; } static inline void xor_blocks(uint8_t* a, const uint8_t* b) { #if USE_INT128 *((uint128_t*) a) ^= *((uint128_t*) b); #else ((uint64_t*) a)[0] ^= ((uint64_t*) b)[0]; ((uint64_t*) a)[1] ^= ((uint64_t*) b)[1]; #endif } static inline void xor_blocks_dst(const uint8_t* a, const uint8_t* b, uint8_t* dst) { #if USE_INT128 *((uint128_t*) dst) = *((uint128_t*) a) ^ *((uint128_t*) b); #else ((uint64_t*) dst)[0] = ((uint64_t*) a)[0] ^ ((uint64_t*) b)[0]; ((uint64_t*) dst)[1] = ((uint64_t*) a)[1] ^ ((uint64_t*) b)[1]; #endif } struct cryptonight_ctx { uint8_t long_state[MEMORY] __attribute((aligned(16))); union cn_slow_hash_state state; uint8_t text[INIT_SIZE_BYTE] __attribute((aligned(16))); uint8_t a[AES_BLOCK_SIZE] __attribute__((aligned(16))); uint8_t b[AES_BLOCK_SIZE] __attribute__((aligned(16))); uint8_t c[AES_BLOCK_SIZE] __attribute__((aligned(16))); oaes_ctx* aes_ctx; }; void cryptonight_hash_ctx(void* output, const void* input, size_t len, struct cryptonight_ctx* ctx) { hash_process(&ctx->state.hs, (const uint8_t*) input, len); ctx->aes_ctx = (oaes_ctx*) oaes_alloc(); size_t i, j; memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE); oaes_key_import_data(ctx->aes_ctx, ctx->state.hs.b, AES_KEY_SIZE); for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) { aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 0], ctx->aes_ctx->key->exp_data); aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 1], ctx->aes_ctx->key->exp_data); aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 2], ctx->aes_ctx->key->exp_data); aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 3], ctx->aes_ctx->key->exp_data); aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 4], ctx->aes_ctx->key->exp_data); aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 5], ctx->aes_ctx->key->exp_data); aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 6], ctx->aes_ctx->key->exp_data); aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 7], ctx->aes_ctx->key->exp_data); memcpy(&ctx->long_state[i], ctx->text, INIT_SIZE_BYTE); } xor_blocks_dst(&ctx->state.k[0], &ctx->state.k[32], ctx->a); xor_blocks_dst(&ctx->state.k[16], &ctx->state.k[48], ctx->b); for (i = 0; likely(i < ITER / 4); ++i) { /* Dependency chain: address -> read value ------+ * written value <-+ hard function (AES or MUL) <+ * next address <-+ */ /* Iteration 1 */ j = e2i(ctx->a); aesb_single_round(&ctx->long_state[j], ctx->c, ctx->a); xor_blocks_dst(ctx->c, ctx->b, &ctx->long_state[j]); /* Iteration 2 */ mul_sum_xor_dst(ctx->c, ctx->a, &ctx->long_state[e2i(ctx->c)]); /* Iteration 3 */ j = e2i(ctx->a); aesb_single_round(&ctx->long_state[j], ctx->b, ctx->a); xor_blocks_dst(ctx->b, ctx->c, &ctx->long_state[j]); /* Iteration 4 */ mul_sum_xor_dst(ctx->b, ctx->a, &ctx->long_state[e2i(ctx->b)]); } memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE); oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE); for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) { xor_blocks(&ctx->text[0 * AES_BLOCK_SIZE], &ctx->long_state[i + 0 * AES_BLOCK_SIZE]); aesb_pseudo_round_mut(&ctx->text[0 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); xor_blocks(&ctx->text[1 * AES_BLOCK_SIZE], &ctx->long_state[i + 1 * AES_BLOCK_SIZE]); aesb_pseudo_round_mut(&ctx->text[1 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); xor_blocks(&ctx->text[2 * AES_BLOCK_SIZE], &ctx->long_state[i + 2 * AES_BLOCK_SIZE]); aesb_pseudo_round_mut(&ctx->text[2 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); xor_blocks(&ctx->text[3 * AES_BLOCK_SIZE], &ctx->long_state[i + 3 * AES_BLOCK_SIZE]); aesb_pseudo_round_mut(&ctx->text[3 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); xor_blocks(&ctx->text[4 * AES_BLOCK_SIZE], &ctx->long_state[i + 4 * AES_BLOCK_SIZE]); aesb_pseudo_round_mut(&ctx->text[4 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); xor_blocks(&ctx->text[5 * AES_BLOCK_SIZE], &ctx->long_state[i + 5 * AES_BLOCK_SIZE]); aesb_pseudo_round_mut(&ctx->text[5 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); xor_blocks(&ctx->text[6 * AES_BLOCK_SIZE], &ctx->long_state[i + 6 * AES_BLOCK_SIZE]); aesb_pseudo_round_mut(&ctx->text[6 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); xor_blocks(&ctx->text[7 * AES_BLOCK_SIZE], &ctx->long_state[i + 7 * AES_BLOCK_SIZE]); aesb_pseudo_round_mut(&ctx->text[7 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); } memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE); hash_permutation(&ctx->state.hs); /*memcpy(hash, &state, 32);*/ extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output); oaes_free((OAES_CTX **) &ctx->aes_ctx); } void cryptonight_hash(void* output, const void* input, size_t len) { struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx)); cryptonight_hash_ctx(output, input, len, ctx); free(ctx); } void cryptonight_hash_ctx_aes_ni(void* output, const void* input, size_t len, struct cryptonight_ctx* ctx) { hash_process(&ctx->state.hs, (const uint8_t*) input, len); ctx->aes_ctx = (oaes_ctx*) oaes_alloc(); size_t i, j; memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE); oaes_key_import_data(ctx->aes_ctx, ctx->state.hs.b, AES_KEY_SIZE); for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) { fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 0], ctx->aes_ctx->key->exp_data); fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 1], ctx->aes_ctx->key->exp_data); fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 2], ctx->aes_ctx->key->exp_data); fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 3], ctx->aes_ctx->key->exp_data); fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 4], ctx->aes_ctx->key->exp_data); fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 5], ctx->aes_ctx->key->exp_data); fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 6], ctx->aes_ctx->key->exp_data); fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 7], ctx->aes_ctx->key->exp_data); memcpy(&ctx->long_state[i], ctx->text, INIT_SIZE_BYTE); } xor_blocks_dst(&ctx->state.k[0], &ctx->state.k[32], ctx->a); xor_blocks_dst(&ctx->state.k[16], &ctx->state.k[48], ctx->b); for (i = 0; likely(i < ITER / 4); ++i) { /* Dependency chain: address -> read value ------+ * written value <-+ hard function (AES or MUL) <+ * next address <-+ */ /* Iteration 1 */ j = e2i(ctx->a); fast_aesb_single_round(&ctx->long_state[j], ctx->c, ctx->a); xor_blocks_dst(ctx->c, ctx->b, &ctx->long_state[j]); /* Iteration 2 */ mul_sum_xor_dst(ctx->c, ctx->a, &ctx->long_state[e2i(ctx->c)]); /* Iteration 3 */ j = e2i(ctx->a); fast_aesb_single_round(&ctx->long_state[j], ctx->b, ctx->a); xor_blocks_dst(ctx->b, ctx->c, &ctx->long_state[j]); /* Iteration 4 */ mul_sum_xor_dst(ctx->b, ctx->a, &ctx->long_state[e2i(ctx->b)]); } memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE); oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE); for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) { xor_blocks(&ctx->text[0 * AES_BLOCK_SIZE], &ctx->long_state[i + 0 * AES_BLOCK_SIZE]); fast_aesb_pseudo_round_mut(&ctx->text[0 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); xor_blocks(&ctx->text[1 * AES_BLOCK_SIZE], &ctx->long_state[i + 1 * AES_BLOCK_SIZE]); fast_aesb_pseudo_round_mut(&ctx->text[1 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); xor_blocks(&ctx->text[2 * AES_BLOCK_SIZE], &ctx->long_state[i + 2 * AES_BLOCK_SIZE]); fast_aesb_pseudo_round_mut(&ctx->text[2 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); xor_blocks(&ctx->text[3 * AES_BLOCK_SIZE], &ctx->long_state[i + 3 * AES_BLOCK_SIZE]); fast_aesb_pseudo_round_mut(&ctx->text[3 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); xor_blocks(&ctx->text[4 * AES_BLOCK_SIZE], &ctx->long_state[i + 4 * AES_BLOCK_SIZE]); fast_aesb_pseudo_round_mut(&ctx->text[4 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); xor_blocks(&ctx->text[5 * AES_BLOCK_SIZE], &ctx->long_state[i + 5 * AES_BLOCK_SIZE]); fast_aesb_pseudo_round_mut(&ctx->text[5 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); xor_blocks(&ctx->text[6 * AES_BLOCK_SIZE], &ctx->long_state[i + 6 * AES_BLOCK_SIZE]); fast_aesb_pseudo_round_mut(&ctx->text[6 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); xor_blocks(&ctx->text[7 * AES_BLOCK_SIZE], &ctx->long_state[i + 7 * AES_BLOCK_SIZE]); fast_aesb_pseudo_round_mut(&ctx->text[7 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); } memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE); hash_permutation(&ctx->state.hs); /*memcpy(hash, &state, 32);*/ extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output); oaes_free((OAES_CTX **) &ctx->aes_ctx); } int scanhash_cryptonight(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uint32_t max_nonce, uint64_t *hashes_done) { uint32_t *nonceptr = (uint32_t*) (((char*)pdata) + 39); uint32_t n = *nonceptr - 1; const uint32_t first_nonce = n + 1; const uint32_t Htarg = ptarget[7]; uint32_t hash[HASH_SIZE / 4] __attribute__((aligned(32))); struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx)); if (aes_ni_supported) { do { *nonceptr = ++n; cryptonight_hash_ctx_aes_ni(hash, pdata, 76, ctx); if (unlikely(hash[7] < ptarget[7])) { *hashes_done = n - first_nonce + 1; free(ctx); return true; } } while (likely((n <= max_nonce && !work_restart[thr_id].restart))); } else { do { *nonceptr = ++n; cryptonight_hash_ctx(hash, pdata, 76, ctx); if (unlikely(hash[7] < ptarget[7])) { *hashes_done = n - first_nonce + 1; free(ctx); return true; } } while (likely((n <= max_nonce && !work_restart[thr_id].restart))); } free(ctx); *hashes_done = n - first_nonce + 1; return 0; }