#include "miner.h" #include #include #include #include #include "sha3/sph_blake.h" #include "sha3/sph_bmw.h" #include "sha3/sph_groestl.h" #include "sha3/sph_jh.h" #include "sha3/sph_keccak.h" #include "sha3/sph_skein.h" #include "sha3/sph_luffa.h" #include "sha3/sph_cubehash.h" #include "sha3/sph_shavite.h" #include "sha3/sph_simd.h" #include "sha3/sph_echo.h" void x11_hash(char* output, const char* input) { sph_blake512_context ctx_blake; sph_bmw512_context ctx_bmw; sph_groestl512_context ctx_groestl; sph_skein512_context ctx_skein; sph_jh512_context ctx_jh; sph_keccak512_context ctx_keccak; sph_luffa512_context ctx_luffa1; sph_cubehash512_context ctx_cubehash1; sph_shavite512_context ctx_shavite1; sph_simd512_context ctx_simd1; sph_echo512_context ctx_echo1; //these uint512 in the c++ source of the client are backed by an array of uint32 uint32_t hashA[16], hashB[16]; sph_blake512_init(&ctx_blake); sph_blake512 (&ctx_blake, input, 80); sph_blake512_close (&ctx_blake, hashA); sph_bmw512_init(&ctx_bmw); sph_bmw512 (&ctx_bmw, hashA, 64); sph_bmw512_close(&ctx_bmw, hashB); sph_groestl512_init(&ctx_groestl); sph_groestl512 (&ctx_groestl, hashB, 64); sph_groestl512_close(&ctx_groestl, hashA); sph_skein512_init(&ctx_skein); sph_skein512 (&ctx_skein, hashA, 64); sph_skein512_close (&ctx_skein, hashB); sph_jh512_init(&ctx_jh); sph_jh512 (&ctx_jh, hashB, 64); sph_jh512_close(&ctx_jh, hashA); sph_keccak512_init(&ctx_keccak); sph_keccak512 (&ctx_keccak, hashA, 64); sph_keccak512_close(&ctx_keccak, hashB); sph_luffa512_init (&ctx_luffa1); sph_luffa512 (&ctx_luffa1, hashB, 64); sph_luffa512_close (&ctx_luffa1, hashA); sph_cubehash512_init (&ctx_cubehash1); sph_cubehash512 (&ctx_cubehash1, hashA, 64); sph_cubehash512_close(&ctx_cubehash1, hashB); sph_shavite512_init (&ctx_shavite1); sph_shavite512 (&ctx_shavite1, hashB, 64); sph_shavite512_close(&ctx_shavite1, hashA); sph_simd512_init (&ctx_simd1); sph_simd512 (&ctx_simd1, hashA, 64); sph_simd512_close(&ctx_simd1, hashB); sph_echo512_init (&ctx_echo1); sph_echo512 (&ctx_echo1, hashB, 64); sph_echo512_close(&ctx_echo1, hashA); memcpy(output, hashA, 32); } int scanhash_x11(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uint32_t max_nonce, uint64_t *hashes_done) { uint32_t n = pdata[19] - 1; const uint32_t first_nonce = pdata[19]; const uint32_t Htarg = ptarget[7]; uint32_t hash64[8] __attribute__((aligned(32))); uint32_t endiandata[32]; //char testdata[] = {"\x70\x00\x00\x00\x5d\x38\x5b\xa1\x14\xd0\x79\x97\x0b\x29\xa9\x41\x8f\xd0\x54\x9e\x7d\x68\xa9\x5c\x7f\x16\x86\x21\xa3\x14\x20\x10\x00\x00\x00\x00\x57\x85\x86\xd1\x49\xfd\x07\xb2\x2f\x3a\x8a\x34\x7c\x51\x6d\xe7\x05\x2f\x03\x4d\x2b\x76\xff\x68\xe0\xd6\xec\xff\x9b\x77\xa4\x54\x89\xe3\xfd\x51\x17\x32\x01\x1d\xf0\x73\x10\x00"}; //we need bigendian data... //lessons learned: do NOT endianchange directly in pdata, this will all proof-of-works be considered as stale from minerd.... int kk=0; for (; kk < 32; kk++) { be32enc(&endiandata[kk], ((uint32_t*)pdata)[kk]); }; // if (opt_debug) // { // applog(LOG_DEBUG, "Thr: %02d, firstN: %08x, maxN: %08x, ToDo: %d", thr_id, first_nonce, max_nonce, max_nonce-first_nonce); // } /* I'm to lazy to put the loop in an inline function... so dirty copy'n'paste.... */ /* i know that i could set a variable, but i don't know how the compiler will optimize it, not that then the cpu needs to load the value *everytime* in a register */ if (ptarget[7]==0) { do { pdata[19] = ++n; be32enc(&endiandata[19], n); x11_hash((char*) hash64, (const char*) endiandata); if (((hash64[7]&0xFFFFFFFF)==0) && fulltest(hash64, ptarget)) { *hashes_done = n - first_nonce + 1; return true; } } while (n < max_nonce && !work_restart[thr_id].restart); } else if (ptarget[7]<=0xF) { do { pdata[19] = ++n; be32enc(&endiandata[19], n); x11_hash((char*) hash64, (const char*) endiandata); if (((hash64[7]&0xFFFFFFF0)==0) && fulltest(hash64, ptarget)) { *hashes_done = n - first_nonce + 1; return true; } } while (n < max_nonce && !work_restart[thr_id].restart); } else if (ptarget[7]<=0xFF) { do { pdata[19] = ++n; be32enc(&endiandata[19], n); x11_hash((char*) hash64, (const char*) endiandata); if (((hash64[7]&0xFFFFFF00)==0) && fulltest(hash64, ptarget)) { *hashes_done = n - first_nonce + 1; return true; } } while (n < max_nonce && !work_restart[thr_id].restart); } else if (ptarget[7]<=0xFFF) { do { pdata[19] = ++n; be32enc(&endiandata[19], n); x11_hash((char*) hash64, (const char*) endiandata); if (((hash64[7]&0xFFFFF000)==0) && fulltest(hash64, ptarget)) { *hashes_done = n - first_nonce + 1; return true; } } while (n < max_nonce && !work_restart[thr_id].restart); } else if (ptarget[7]<=0xFFFF) { do { pdata[19] = ++n; be32enc(&endiandata[19], n); x11_hash((char*) hash64, (const char*) endiandata); if (((hash64[7]&0xFFFF0000)==0) && fulltest(hash64, ptarget)) { *hashes_done = n - first_nonce + 1; return true; } } while (n < max_nonce && !work_restart[thr_id].restart); } else { do { pdata[19] = ++n; be32enc(&endiandata[19], n); x11_hash((char*) hash64, (const char*) endiandata); if (fulltest(hash64, ptarget)) { *hashes_done = n - first_nonce + 1; return true; } } while (n < max_nonce && !work_restart[thr_id].restart); } *hashes_done = n - first_nonce + 1; pdata[19] = n; return 0; }