# Deliberately use "from dataclasses import *". Every name in __all__ # is tested, so they all must be present. This is a way to catch # missing ones. from dataclasses import * import pickle import inspect import builtins import unittest from unittest.mock import Mock from typing import ClassVar, Any, List, Union, Tuple, Dict, Generic, TypeVar, Optional from typing import get_type_hints from collections import deque, OrderedDict, namedtuple from functools import total_ordering import typing # Needed for the string "typing.ClassVar[int]" to work as an annotation. import dataclasses # Needed for the string "dataclasses.InitVar[int]" to work as an annotation. # Just any custom exception we can catch. class CustomError(Exception): pass class TestCase(unittest.TestCase): def test_no_fields(self): @dataclass class C: pass o = C() self.assertEqual(len(fields(C)), 0) def test_no_fields_but_member_variable(self): @dataclass class C: i = 0 o = C() self.assertEqual(len(fields(C)), 0) def test_one_field_no_default(self): @dataclass class C: x: int o = C(42) self.assertEqual(o.x, 42) def test_field_default_default_factory_error(self): msg = "cannot specify both default and default_factory" with self.assertRaisesRegex(ValueError, msg): @dataclass class C: x: int = field(default=1, default_factory=int) def test_field_repr(self): int_field = field(default=1, init=True, repr=False) int_field.name = "id" repr_output = repr(int_field) expected_output = "Field(name='id',type=None," \ f"default=1,default_factory={MISSING!r}," \ "init=True,repr=False,hash=None," \ "compare=True,metadata=mappingproxy({})," \ "_field_type=None)" self.assertEqual(repr_output, expected_output) def test_named_init_params(self): @dataclass class C: x: int o = C(x=32) self.assertEqual(o.x, 32) def test_two_fields_one_default(self): @dataclass class C: x: int y: int = 0 o = C(3) self.assertEqual((o.x, o.y), (3, 0)) # Non-defaults following defaults. with self.assertRaisesRegex(TypeError, "non-default argument 'y' follows " "default argument"): @dataclass class C: x: int = 0 y: int # A derived class adds a non-default field after a default one. with self.assertRaisesRegex(TypeError, "non-default argument 'y' follows " "default argument"): @dataclass class B: x: int = 0 @dataclass class C(B): y: int # Override a base class field and add a default to # a field which didn't use to have a default. with self.assertRaisesRegex(TypeError, "non-default argument 'y' follows " "default argument"): @dataclass class B: x: int y: int @dataclass class C(B): x: int = 0 def test_overwrite_hash(self): # Test that declaring this class isn't an error. It should # use the user-provided __hash__. @dataclass(frozen=True) class C: x: int def __hash__(self): return 301 self.assertEqual(hash(C(100)), 301) # Test that declaring this class isn't an error. It should # use the generated __hash__. @dataclass(frozen=True) class C: x: int def __eq__(self, other): return False self.assertEqual(hash(C(100)), hash((100,))) # But this one should generate an exception, because with # unsafe_hash=True, it's an error to have a __hash__ defined. with self.assertRaisesRegex(TypeError, 'Cannot overwrite attribute __hash__'): @dataclass(unsafe_hash=True) class C: def __hash__(self): pass # Creating this class should not generate an exception, # because even though __hash__ exists before @dataclass is # called, (due to __eq__ being defined), since it's None # that's okay. @dataclass(unsafe_hash=True) class C: x: int def __eq__(self): pass # The generated hash function works as we'd expect. self.assertEqual(hash(C(10)), hash((10,))) # Creating this class should generate an exception, because # __hash__ exists and is not None, which it would be if it # had been auto-generated due to __eq__ being defined. with self.assertRaisesRegex(TypeError, 'Cannot overwrite attribute __hash__'): @dataclass(unsafe_hash=True) class C: x: int def __eq__(self): pass def __hash__(self): pass def test_overwrite_fields_in_derived_class(self): # Note that x from C1 replaces x in Base, but the order remains # the same as defined in Base. @dataclass class Base: x: Any = 15.0 y: int = 0 @dataclass class C1(Base): z: int = 10 x: int = 15 o = Base() self.assertEqual(repr(o), 'TestCase.test_overwrite_fields_in_derived_class..Base(x=15.0, y=0)') o = C1() self.assertEqual(repr(o), 'TestCase.test_overwrite_fields_in_derived_class..C1(x=15, y=0, z=10)') o = C1(x=5) self.assertEqual(repr(o), 'TestCase.test_overwrite_fields_in_derived_class..C1(x=5, y=0, z=10)') def test_field_named_self(self): @dataclass class C: self: str c=C('foo') self.assertEqual(c.self, 'foo') # Make sure the first parameter is not named 'self'. sig = inspect.signature(C.__init__) first = next(iter(sig.parameters)) self.assertNotEqual('self', first) # But we do use 'self' if no field named self. @dataclass class C: selfx: str # Make sure the first parameter is named 'self'. sig = inspect.signature(C.__init__) first = next(iter(sig.parameters)) self.assertEqual('self', first) def test_field_named_object(self): @dataclass class C: object: str c = C('foo') self.assertEqual(c.object, 'foo') def test_field_named_object_frozen(self): @dataclass(frozen=True) class C: object: str c = C('foo') self.assertEqual(c.object, 'foo') def test_field_named_like_builtin(self): # Attribute names can shadow built-in names # since code generation is used. # Ensure that this is not happening. exclusions = {'None', 'True', 'False'} builtins_names = sorted( b for b in builtins.__dict__.keys() if not b.startswith('__') and b not in exclusions ) attributes = [(name, str) for name in builtins_names] C = make_dataclass('C', attributes) c = C(*[name for name in builtins_names]) for name in builtins_names: self.assertEqual(getattr(c, name), name) def test_field_named_like_builtin_frozen(self): # Attribute names can shadow built-in names # since code generation is used. # Ensure that this is not happening # for frozen data classes. exclusions = {'None', 'True', 'False'} builtins_names = sorted( b for b in builtins.__dict__.keys() if not b.startswith('__') and b not in exclusions ) attributes = [(name, str) for name in builtins_names] C = make_dataclass('C', attributes, frozen=True) c = C(*[name for name in builtins_names]) for name in builtins_names: self.assertEqual(getattr(c, name), name) def test_0_field_compare(self): # Ensure that order=False is the default. @dataclass class C0: pass @dataclass(order=False) class C1: pass for cls in [C0, C1]: with self.subTest(cls=cls): self.assertEqual(cls(), cls()) for idx, fn in enumerate([lambda a, b: a < b, lambda a, b: a <= b, lambda a, b: a > b, lambda a, b: a >= b]): with self.subTest(idx=idx): with self.assertRaisesRegex(TypeError, f"not supported between instances of '{cls.__name__}' and '{cls.__name__}'"): fn(cls(), cls()) @dataclass(order=True) class C: pass self.assertLessEqual(C(), C()) self.assertGreaterEqual(C(), C()) def test_1_field_compare(self): # Ensure that order=False is the default. @dataclass class C0: x: int @dataclass(order=False) class C1: x: int for cls in [C0, C1]: with self.subTest(cls=cls): self.assertEqual(cls(1), cls(1)) self.assertNotEqual(cls(0), cls(1)) for idx, fn in enumerate([lambda a, b: a < b, lambda a, b: a <= b, lambda a, b: a > b, lambda a, b: a >= b]): with self.subTest(idx=idx): with self.assertRaisesRegex(TypeError, f"not supported between instances of '{cls.__name__}' and '{cls.__name__}'"): fn(cls(0), cls(0)) @dataclass(order=True) class C: x: int self.assertLess(C(0), C(1)) self.assertLessEqual(C(0), C(1)) self.assertLessEqual(C(1), C(1)) self.assertGreater(C(1), C(0)) self.assertGreaterEqual(C(1), C(0)) self.assertGreaterEqual(C(1), C(1)) def test_simple_compare(self): # Ensure that order=False is the default. @dataclass class C0: x: int y: int @dataclass(order=False) class C1: x: int y: int for cls in [C0, C1]: with self.subTest(cls=cls): self.assertEqual(cls(0, 0), cls(0, 0)) self.assertEqual(cls(1, 2), cls(1, 2)) self.assertNotEqual(cls(1, 0), cls(0, 0)) self.assertNotEqual(cls(1, 0), cls(1, 1)) for idx, fn in enumerate([lambda a, b: a < b, lambda a, b: a <= b, lambda a, b: a > b, lambda a, b: a >= b]): with self.subTest(idx=idx): with self.assertRaisesRegex(TypeError, f"not supported between instances of '{cls.__name__}' and '{cls.__name__}'"): fn(cls(0, 0), cls(0, 0)) @dataclass(order=True) class C: x: int y: int for idx, fn in enumerate([lambda a, b: a == b, lambda a, b: a <= b, lambda a, b: a >= b]): with self.subTest(idx=idx): self.assertTrue(fn(C(0, 0), C(0, 0))) for idx, fn in enumerate([lambda a, b: a < b, lambda a, b: a <= b, lambda a, b: a != b]): with self.subTest(idx=idx): self.assertTrue(fn(C(0, 0), C(0, 1))) self.assertTrue(fn(C(0, 1), C(1, 0))) self.assertTrue(fn(C(1, 0), C(1, 1))) for idx, fn in enumerate([lambda a, b: a > b, lambda a, b: a >= b, lambda a, b: a != b]): with self.subTest(idx=idx): self.assertTrue(fn(C(0, 1), C(0, 0))) self.assertTrue(fn(C(1, 0), C(0, 1))) self.assertTrue(fn(C(1, 1), C(1, 0))) def test_compare_subclasses(self): # Comparisons fail for subclasses, even if no fields # are added. @dataclass class B: i: int @dataclass class C(B): pass for idx, (fn, expected) in enumerate([(lambda a, b: a == b, False), (lambda a, b: a != b, True)]): with self.subTest(idx=idx): self.assertEqual(fn(B(0), C(0)), expected) for idx, fn in enumerate([lambda a, b: a < b, lambda a, b: a <= b, lambda a, b: a > b, lambda a, b: a >= b]): with self.subTest(idx=idx): with self.assertRaisesRegex(TypeError, "not supported between instances of 'B' and 'C'"): fn(B(0), C(0)) def test_eq_order(self): # Test combining eq and order. for (eq, order, result ) in [ (False, False, 'neither'), (False, True, 'exception'), (True, False, 'eq_only'), (True, True, 'both'), ]: with self.subTest(eq=eq, order=order): if result == 'exception': with self.assertRaisesRegex(ValueError, 'eq must be true if order is true'): @dataclass(eq=eq, order=order) class C: pass else: @dataclass(eq=eq, order=order) class C: pass if result == 'neither': self.assertNotIn('__eq__', C.__dict__) self.assertNotIn('__lt__', C.__dict__) self.assertNotIn('__le__', C.__dict__) self.assertNotIn('__gt__', C.__dict__) self.assertNotIn('__ge__', C.__dict__) elif result == 'both': self.assertIn('__eq__', C.__dict__) self.assertIn('__lt__', C.__dict__) self.assertIn('__le__', C.__dict__) self.assertIn('__gt__', C.__dict__) self.assertIn('__ge__', C.__dict__) elif result == 'eq_only': self.assertIn('__eq__', C.__dict__) self.assertNotIn('__lt__', C.__dict__) self.assertNotIn('__le__', C.__dict__) self.assertNotIn('__gt__', C.__dict__) self.assertNotIn('__ge__', C.__dict__) else: assert False, f'unknown result {result!r}' def test_field_no_default(self): @dataclass class C: x: int = field() self.assertEqual(C(5).x, 5) with self.assertRaisesRegex(TypeError, r"__init__\(\) missing 1 required " "positional argument: 'x'"): C() def test_field_default(self): default = object() @dataclass class C: x: object = field(default=default) self.assertIs(C.x, default) c = C(10) self.assertEqual(c.x, 10) # If we delete the instance attribute, we should then see the # class attribute. del c.x self.assertIs(c.x, default) self.assertIs(C().x, default) def test_not_in_repr(self): @dataclass class C: x: int = field(repr=False) with self.assertRaises(TypeError): C() c = C(10) self.assertEqual(repr(c), 'TestCase.test_not_in_repr..C()') @dataclass class C: x: int = field(repr=False) y: int c = C(10, 20) self.assertEqual(repr(c), 'TestCase.test_not_in_repr..C(y=20)') def test_not_in_compare(self): @dataclass class C: x: int = 0 y: int = field(compare=False, default=4) self.assertEqual(C(), C(0, 20)) self.assertEqual(C(1, 10), C(1, 20)) self.assertNotEqual(C(3), C(4, 10)) self.assertNotEqual(C(3, 10), C(4, 10)) def test_hash_field_rules(self): # Test all 6 cases of: # hash=True/False/None # compare=True/False for (hash_, compare, result ) in [ (True, False, 'field' ), (True, True, 'field' ), (False, False, 'absent'), (False, True, 'absent'), (None, False, 'absent'), (None, True, 'field' ), ]: with self.subTest(hash=hash_, compare=compare): @dataclass(unsafe_hash=True) class C: x: int = field(compare=compare, hash=hash_, default=5) if result == 'field': # __hash__ contains the field. self.assertEqual(hash(C(5)), hash((5,))) elif result == 'absent': # The field is not present in the hash. self.assertEqual(hash(C(5)), hash(())) else: assert False, f'unknown result {result!r}' def test_init_false_no_default(self): # If init=False and no default value, then the field won't be # present in the instance. @dataclass class C: x: int = field(init=False) self.assertNotIn('x', C().__dict__) @dataclass class C: x: int y: int = 0 z: int = field(init=False) t: int = 10 self.assertNotIn('z', C(0).__dict__) self.assertEqual(vars(C(5)), {'t': 10, 'x': 5, 'y': 0}) def test_class_marker(self): @dataclass class C: x: int y: str = field(init=False, default=None) z: str = field(repr=False) the_fields = fields(C) # the_fields is a tuple of 3 items, each value # is in __annotations__. self.assertIsInstance(the_fields, tuple) for f in the_fields: self.assertIs(type(f), Field) self.assertIn(f.name, C.__annotations__) self.assertEqual(len(the_fields), 3) self.assertEqual(the_fields[0].name, 'x') self.assertEqual(the_fields[0].type, int) self.assertFalse(hasattr(C, 'x')) self.assertTrue (the_fields[0].init) self.assertTrue (the_fields[0].repr) self.assertEqual(the_fields[1].name, 'y') self.assertEqual(the_fields[1].type, str) self.assertIsNone(getattr(C, 'y')) self.assertFalse(the_fields[1].init) self.assertTrue (the_fields[1].repr) self.assertEqual(the_fields[2].name, 'z') self.assertEqual(the_fields[2].type, str) self.assertFalse(hasattr(C, 'z')) self.assertTrue (the_fields[2].init) self.assertFalse(the_fields[2].repr) def test_field_order(self): @dataclass class B: a: str = 'B:a' b: str = 'B:b' c: str = 'B:c' @dataclass class C(B): b: str = 'C:b' self.assertEqual([(f.name, f.default) for f in fields(C)], [('a', 'B:a'), ('b', 'C:b'), ('c', 'B:c')]) @dataclass class D(B): c: str = 'D:c' self.assertEqual([(f.name, f.default) for f in fields(D)], [('a', 'B:a'), ('b', 'B:b'), ('c', 'D:c')]) @dataclass class E(D): a: str = 'E:a' d: str = 'E:d' self.assertEqual([(f.name, f.default) for f in fields(E)], [('a', 'E:a'), ('b', 'B:b'), ('c', 'D:c'), ('d', 'E:d')]) def test_class_attrs(self): # We only have a class attribute if a default value is # specified, either directly or via a field with a default. default = object() @dataclass class C: x: int y: int = field(repr=False) z: object = default t: int = field(default=100) self.assertFalse(hasattr(C, 'x')) self.assertFalse(hasattr(C, 'y')) self.assertIs (C.z, default) self.assertEqual(C.t, 100) def test_disallowed_mutable_defaults(self): # For the known types, don't allow mutable default values. for typ, empty, non_empty in [(list, [], [1]), (dict, {}, {0:1}), (set, set(), set([1])), ]: with self.subTest(typ=typ): # Can't use a zero-length value. with self.assertRaisesRegex(ValueError, f'mutable default {typ} for field ' 'x is not allowed'): @dataclass class Point: x: typ = empty # Nor a non-zero-length value with self.assertRaisesRegex(ValueError, f'mutable default {typ} for field ' 'y is not allowed'): @dataclass class Point: y: typ = non_empty # Check subtypes also fail. class Subclass(typ): pass with self.assertRaisesRegex(ValueError, f"mutable default .*Subclass'>" ' for field z is not allowed' ): @dataclass class Point: z: typ = Subclass() # Because this is a ClassVar, it can be mutable. @dataclass class C: z: ClassVar[typ] = typ() # Because this is a ClassVar, it can be mutable. @dataclass class C: x: ClassVar[typ] = Subclass() def test_deliberately_mutable_defaults(self): # If a mutable default isn't in the known list of # (list, dict, set), then it's okay. class Mutable: def __init__(self): self.l = [] @dataclass class C: x: Mutable # These 2 instances will share this value of x. lst = Mutable() o1 = C(lst) o2 = C(lst) self.assertEqual(o1, o2) o1.x.l.extend([1, 2]) self.assertEqual(o1, o2) self.assertEqual(o1.x.l, [1, 2]) self.assertIs(o1.x, o2.x) def test_no_options(self): # Call with dataclass(). @dataclass() class C: x: int self.assertEqual(C(42).x, 42) def test_not_tuple(self): # Make sure we can't be compared to a tuple. @dataclass class Point: x: int y: int self.assertNotEqual(Point(1, 2), (1, 2)) # And that we can't compare to another unrelated dataclass. @dataclass class C: x: int y: int self.assertNotEqual(Point(1, 3), C(1, 3)) def test_not_other_dataclass(self): # Test that some of the problems with namedtuple don't happen # here. @dataclass class Point3D: x: int y: int z: int @dataclass class Date: year: int month: int day: int self.assertNotEqual(Point3D(2017, 6, 3), Date(2017, 6, 3)) self.assertNotEqual(Point3D(1, 2, 3), (1, 2, 3)) # Make sure we can't unpack. with self.assertRaisesRegex(TypeError, 'unpack'): x, y, z = Point3D(4, 5, 6) # Make sure another class with the same field names isn't # equal. @dataclass class Point3Dv1: x: int = 0 y: int = 0 z: int = 0 self.assertNotEqual(Point3D(0, 0, 0), Point3Dv1()) def test_function_annotations(self): # Some dummy class and instance to use as a default. class F: pass f = F() def validate_class(cls): # First, check __annotations__, even though they're not # function annotations. self.assertEqual(cls.__annotations__['i'], int) self.assertEqual(cls.__annotations__['j'], str) self.assertEqual(cls.__annotations__['k'], F) self.assertEqual(cls.__annotations__['l'], float) self.assertEqual(cls.__annotations__['z'], complex) # Verify __init__. signature = inspect.signature(cls.__init__) # Check the return type, should be None. self.assertIs(signature.return_annotation, None) # Check each parameter. params = iter(signature.parameters.values()) param = next(params) # This is testing an internal name, and probably shouldn't be tested. self.assertEqual(param.name, 'self') param = next(params) self.assertEqual(param.name, 'i') self.assertIs (param.annotation, int) self.assertEqual(param.default, inspect.Parameter.empty) self.assertEqual(param.kind, inspect.Parameter.POSITIONAL_OR_KEYWORD) param = next(params) self.assertEqual(param.name, 'j') self.assertIs (param.annotation, str) self.assertEqual(param.default, inspect.Parameter.empty) self.assertEqual(param.kind, inspect.Parameter.POSITIONAL_OR_KEYWORD) param = next(params) self.assertEqual(param.name, 'k') self.assertIs (param.annotation, F) # Don't test for the default, since it's set to MISSING. self.assertEqual(param.kind, inspect.Parameter.POSITIONAL_OR_KEYWORD) param = next(params) self.assertEqual(param.name, 'l') self.assertIs (param.annotation, float) # Don't test for the default, since it's set to MISSING. self.assertEqual(param.kind, inspect.Parameter.POSITIONAL_OR_KEYWORD) self.assertRaises(StopIteration, next, params) @dataclass class C: i: int j: str k: F = f l: float=field(default=None) z: complex=field(default=3+4j, init=False) validate_class(C) # Now repeat with __hash__. @dataclass(frozen=True, unsafe_hash=True) class C: i: int j: str k: F = f l: float=field(default=None) z: complex=field(default=3+4j, init=False) validate_class(C) def test_missing_default(self): # Test that MISSING works the same as a default not being # specified. @dataclass class C: x: int=field(default=MISSING) with self.assertRaisesRegex(TypeError, r'__init__\(\) missing 1 required ' 'positional argument'): C() self.assertNotIn('x', C.__dict__) @dataclass class D: x: int with self.assertRaisesRegex(TypeError, r'__init__\(\) missing 1 required ' 'positional argument'): D() self.assertNotIn('x', D.__dict__) def test_missing_default_factory(self): # Test that MISSING works the same as a default factory not # being specified (which is really the same as a default not # being specified, too). @dataclass class C: x: int=field(default_factory=MISSING) with self.assertRaisesRegex(TypeError, r'__init__\(\) missing 1 required ' 'positional argument'): C() self.assertNotIn('x', C.__dict__) @dataclass class D: x: int=field(default=MISSING, default_factory=MISSING) with self.assertRaisesRegex(TypeError, r'__init__\(\) missing 1 required ' 'positional argument'): D() self.assertNotIn('x', D.__dict__) def test_missing_repr(self): self.assertIn('MISSING_TYPE object', repr(MISSING)) def test_dont_include_other_annotations(self): @dataclass class C: i: int def foo(self) -> int: return 4 @property def bar(self) -> int: return 5 self.assertEqual(list(C.__annotations__), ['i']) self.assertEqual(C(10).foo(), 4) self.assertEqual(C(10).bar, 5) self.assertEqual(C(10).i, 10) def test_post_init(self): # Just make sure it gets called @dataclass class C: def __post_init__(self): raise CustomError() with self.assertRaises(CustomError): C() @dataclass class C: i: int = 10 def __post_init__(self): if self.i == 10: raise CustomError() with self.assertRaises(CustomError): C() # post-init gets called, but doesn't raise. This is just # checking that self is used correctly. C(5) # If there's not an __init__, then post-init won't get called. @dataclass(init=False) class C: def __post_init__(self): raise CustomError() # Creating the class won't raise C() @dataclass class C: x: int = 0 def __post_init__(self): self.x *= 2 self.assertEqual(C().x, 0) self.assertEqual(C(2).x, 4) # Make sure that if we're frozen, post-init can't set # attributes. @dataclass(frozen=True) class C: x: int = 0 def __post_init__(self): self.x *= 2 with self.assertRaises(FrozenInstanceError): C() def test_post_init_super(self): # Make sure super() post-init isn't called by default. class B: def __post_init__(self): raise CustomError() @dataclass class C(B): def __post_init__(self): self.x = 5 self.assertEqual(C().x, 5) # Now call super(), and it will raise. @dataclass class C(B): def __post_init__(self): super().__post_init__() with self.assertRaises(CustomError): C() # Make sure post-init is called, even if not defined in our # class. @dataclass class C(B): pass with self.assertRaises(CustomError): C() def test_post_init_staticmethod(self): flag = False @dataclass class C: x: int y: int @staticmethod def __post_init__(): nonlocal flag flag = True self.assertFalse(flag) c = C(3, 4) self.assertEqual((c.x, c.y), (3, 4)) self.assertTrue(flag) def test_post_init_classmethod(self): @dataclass class C: flag = False x: int y: int @classmethod def __post_init__(cls): cls.flag = True self.assertFalse(C.flag) c = C(3, 4) self.assertEqual((c.x, c.y), (3, 4)) self.assertTrue(C.flag) def test_class_var(self): # Make sure ClassVars are ignored in __init__, __repr__, etc. @dataclass class C: x: int y: int = 10 z: ClassVar[int] = 1000 w: ClassVar[int] = 2000 t: ClassVar[int] = 3000 s: ClassVar = 4000 c = C(5) self.assertEqual(repr(c), 'TestCase.test_class_var..C(x=5, y=10)') self.assertEqual(len(fields(C)), 2) # We have 2 fields. self.assertEqual(len(C.__annotations__), 6) # And 4 ClassVars. self.assertEqual(c.z, 1000) self.assertEqual(c.w, 2000) self.assertEqual(c.t, 3000) self.assertEqual(c.s, 4000) C.z += 1 self.assertEqual(c.z, 1001) c = C(20) self.assertEqual((c.x, c.y), (20, 10)) self.assertEqual(c.z, 1001) self.assertEqual(c.w, 2000) self.assertEqual(c.t, 3000) self.assertEqual(c.s, 4000) def test_class_var_no_default(self): # If a ClassVar has no default value, it should not be set on the class. @dataclass class C: x: ClassVar[int] self.assertNotIn('x', C.__dict__) def test_class_var_default_factory(self): # It makes no sense for a ClassVar to have a default factory. When # would it be called? Call it yourself, since it's class-wide. with self.assertRaisesRegex(TypeError, 'cannot have a default factory'): @dataclass class C: x: ClassVar[int] = field(default_factory=int) self.assertNotIn('x', C.__dict__) def test_class_var_with_default(self): # If a ClassVar has a default value, it should be set on the class. @dataclass class C: x: ClassVar[int] = 10 self.assertEqual(C.x, 10) @dataclass class C: x: ClassVar[int] = field(default=10) self.assertEqual(C.x, 10) def test_class_var_frozen(self): # Make sure ClassVars work even if we're frozen. @dataclass(frozen=True) class C: x: int y: int = 10 z: ClassVar[int] = 1000 w: ClassVar[int] = 2000 t: ClassVar[int] = 3000 c = C(5) self.assertEqual(repr(C(5)), 'TestCase.test_class_var_frozen..C(x=5, y=10)') self.assertEqual(len(fields(C)), 2) # We have 2 fields self.assertEqual(len(C.__annotations__), 5) # And 3 ClassVars self.assertEqual(c.z, 1000) self.assertEqual(c.w, 2000) self.assertEqual(c.t, 3000) # We can still modify the ClassVar, it's only instances that are # frozen. C.z += 1 self.assertEqual(c.z, 1001) c = C(20) self.assertEqual((c.x, c.y), (20, 10)) self.assertEqual(c.z, 1001) self.assertEqual(c.w, 2000) self.assertEqual(c.t, 3000) def test_init_var_no_default(self): # If an InitVar has no default value, it should not be set on the class. @dataclass class C: x: InitVar[int] self.assertNotIn('x', C.__dict__) def test_init_var_default_factory(self): # It makes no sense for an InitVar to have a default factory. When # would it be called? Call it yourself, since it's class-wide. with self.assertRaisesRegex(TypeError, 'cannot have a default factory'): @dataclass class C: x: InitVar[int] = field(default_factory=int) self.assertNotIn('x', C.__dict__) def test_init_var_with_default(self): # If an InitVar has a default value, it should be set on the class. @dataclass class C: x: InitVar[int] = 10 self.assertEqual(C.x, 10) @dataclass class C: x: InitVar[int] = field(default=10) self.assertEqual(C.x, 10) def test_init_var(self): @dataclass class C: x: int = None init_param: InitVar[int] = None def __post_init__(self, init_param): if self.x is None: self.x = init_param*2 c = C(init_param=10) self.assertEqual(c.x, 20) def test_init_var_preserve_type(self): self.assertEqual(InitVar[int].type, int) # Make sure the repr is correct. self.assertEqual(repr(InitVar[int]), 'dataclasses.InitVar[int]') self.assertEqual(repr(InitVar[List[int]]), 'dataclasses.InitVar[typing.List[int]]') def test_init_var_inheritance(self): # Note that this deliberately tests that a dataclass need not # have a __post_init__ function if it has an InitVar field. # It could just be used in a derived class, as shown here. @dataclass class Base: x: int init_base: InitVar[int] # We can instantiate by passing the InitVar, even though # it's not used. b = Base(0, 10) self.assertEqual(vars(b), {'x': 0}) @dataclass class C(Base): y: int init_derived: InitVar[int] def __post_init__(self, init_base, init_derived): self.x = self.x + init_base self.y = self.y + init_derived c = C(10, 11, 50, 51) self.assertEqual(vars(c), {'x': 21, 'y': 101}) def test_default_factory(self): # Test a factory that returns a new list. @dataclass class C: x: int y: list = field(default_factory=list) c0 = C(3) c1 = C(3) self.assertEqual(c0.x, 3) self.assertEqual(c0.y, []) self.assertEqual(c0, c1) self.assertIsNot(c0.y, c1.y) self.assertEqual(astuple(C(5, [1])), (5, [1])) # Test a factory that returns a shared list. l = [] @dataclass class C: x: int y: list = field(default_factory=lambda: l) c0 = C(3) c1 = C(3) self.assertEqual(c0.x, 3) self.assertEqual(c0.y, []) self.assertEqual(c0, c1) self.assertIs(c0.y, c1.y) self.assertEqual(astuple(C(5, [1])), (5, [1])) # Test various other field flags. # repr @dataclass class C: x: list = field(default_factory=list, repr=False) self.assertEqual(repr(C()), 'TestCase.test_default_factory..C()') self.assertEqual(C().x, []) # hash @dataclass(unsafe_hash=True) class C: x: list = field(default_factory=list, hash=False) self.assertEqual(astuple(C()), ([],)) self.assertEqual(hash(C()), hash(())) # init (see also test_default_factory_with_no_init) @dataclass class C: x: list = field(default_factory=list, init=False) self.assertEqual(astuple(C()), ([],)) # compare @dataclass class C: x: list = field(default_factory=list, compare=False) self.assertEqual(C(), C([1])) def test_default_factory_with_no_init(self): # We need a factory with a side effect. factory = Mock() @dataclass class C: x: list = field(default_factory=factory, init=False) # Make sure the default factory is called for each new instance. C().x self.assertEqual(factory.call_count, 1) C().x self.assertEqual(factory.call_count, 2) def test_default_factory_not_called_if_value_given(self): # We need a factory that we can test if it's been called. factory = Mock() @dataclass class C: x: int = field(default_factory=factory) # Make sure that if a field has a default factory function, # it's not called if a value is specified. C().x self.assertEqual(factory.call_count, 1) self.assertEqual(C(10).x, 10) self.assertEqual(factory.call_count, 1) C().x self.assertEqual(factory.call_count, 2) def test_default_factory_derived(self): # See bpo-32896. @dataclass class Foo: x: dict = field(default_factory=dict) @dataclass class Bar(Foo): y: int = 1 self.assertEqual(Foo().x, {}) self.assertEqual(Bar().x, {}) self.assertEqual(Bar().y, 1) @dataclass class Baz(Foo): pass self.assertEqual(Baz().x, {}) def test_intermediate_non_dataclass(self): # Test that an intermediate class that defines # annotations does not define fields. @dataclass class A: x: int class B(A): y: int @dataclass class C(B): z: int c = C(1, 3) self.assertEqual((c.x, c.z), (1, 3)) # .y was not initialized. with self.assertRaisesRegex(AttributeError, 'object has no attribute'): c.y # And if we again derive a non-dataclass, no fields are added. class D(C): t: int d = D(4, 5) self.assertEqual((d.x, d.z), (4, 5)) def test_classvar_default_factory(self): # It's an error for a ClassVar to have a factory function. with self.assertRaisesRegex(TypeError, 'cannot have a default factory'): @dataclass class C: x: ClassVar[int] = field(default_factory=int) def test_is_dataclass(self): class NotDataClass: pass self.assertFalse(is_dataclass(0)) self.assertFalse(is_dataclass(int)) self.assertFalse(is_dataclass(NotDataClass)) self.assertFalse(is_dataclass(NotDataClass())) @dataclass class C: x: int @dataclass class D: d: C e: int c = C(10) d = D(c, 4) self.assertTrue(is_dataclass(C)) self.assertTrue(is_dataclass(c)) self.assertFalse(is_dataclass(c.x)) self.assertTrue(is_dataclass(d.d)) self.assertFalse(is_dataclass(d.e)) def test_is_dataclass_when_getattr_always_returns(self): # See bpo-37868. class A: def __getattr__(self, key): return 0 self.assertFalse(is_dataclass(A)) a = A() # Also test for an instance attribute. class B: pass b = B() b.__dataclass_fields__ = [] for obj in a, b: with self.subTest(obj=obj): self.assertFalse(is_dataclass(obj)) # Indirect tests for _is_dataclass_instance(). with self.assertRaisesRegex(TypeError, 'should be called on dataclass instances'): asdict(obj) with self.assertRaisesRegex(TypeError, 'should be called on dataclass instances'): astuple(obj) with self.assertRaisesRegex(TypeError, 'should be called on dataclass instances'): replace(obj, x=0) def test_helper_fields_with_class_instance(self): # Check that we can call fields() on either a class or instance, # and get back the same thing. @dataclass class C: x: int y: float self.assertEqual(fields(C), fields(C(0, 0.0))) def test_helper_fields_exception(self): # Check that TypeError is raised if not passed a dataclass or # instance. with self.assertRaisesRegex(TypeError, 'dataclass type or instance'): fields(0) class C: pass with self.assertRaisesRegex(TypeError, 'dataclass type or instance'): fields(C) with self.assertRaisesRegex(TypeError, 'dataclass type or instance'): fields(C()) def test_helper_asdict(self): # Basic tests for asdict(), it should return a new dictionary. @dataclass class C: x: int y: int c = C(1, 2) self.assertEqual(asdict(c), {'x': 1, 'y': 2}) self.assertEqual(asdict(c), asdict(c)) self.assertIsNot(asdict(c), asdict(c)) c.x = 42 self.assertEqual(asdict(c), {'x': 42, 'y': 2}) self.assertIs(type(asdict(c)), dict) def test_helper_asdict_raises_on_classes(self): # asdict() should raise on a class object. @dataclass class C: x: int y: int with self.assertRaisesRegex(TypeError, 'dataclass instance'): asdict(C) with self.assertRaisesRegex(TypeError, 'dataclass instance'): asdict(int) def test_helper_asdict_copy_values(self): @dataclass class C: x: int y: List[int] = field(default_factory=list) initial = [] c = C(1, initial) d = asdict(c) self.assertEqual(d['y'], initial) self.assertIsNot(d['y'], initial) c = C(1) d = asdict(c) d['y'].append(1) self.assertEqual(c.y, []) def test_helper_asdict_nested(self): @dataclass class UserId: token: int group: int @dataclass class User: name: str id: UserId u = User('Joe', UserId(123, 1)) d = asdict(u) self.assertEqual(d, {'name': 'Joe', 'id': {'token': 123, 'group': 1}}) self.assertIsNot(asdict(u), asdict(u)) u.id.group = 2 self.assertEqual(asdict(u), {'name': 'Joe', 'id': {'token': 123, 'group': 2}}) def test_helper_asdict_builtin_containers(self): @dataclass class User: name: str id: int @dataclass class GroupList: id: int users: List[User] @dataclass class GroupTuple: id: int users: Tuple[User, ...] @dataclass class GroupDict: id: int users: Dict[str, User] a = User('Alice', 1) b = User('Bob', 2) gl = GroupList(0, [a, b]) gt = GroupTuple(0, (a, b)) gd = GroupDict(0, {'first': a, 'second': b}) self.assertEqual(asdict(gl), {'id': 0, 'users': [{'name': 'Alice', 'id': 1}, {'name': 'Bob', 'id': 2}]}) self.assertEqual(asdict(gt), {'id': 0, 'users': ({'name': 'Alice', 'id': 1}, {'name': 'Bob', 'id': 2})}) self.assertEqual(asdict(gd), {'id': 0, 'users': {'first': {'name': 'Alice', 'id': 1}, 'second': {'name': 'Bob', 'id': 2}}}) def test_helper_asdict_builtin_object_containers(self): @dataclass class Child: d: object @dataclass class Parent: child: Child self.assertEqual(asdict(Parent(Child([1]))), {'child': {'d': [1]}}) self.assertEqual(asdict(Parent(Child({1: 2}))), {'child': {'d': {1: 2}}}) def test_helper_asdict_factory(self): @dataclass class C: x: int y: int c = C(1, 2) d = asdict(c, dict_factory=OrderedDict) self.assertEqual(d, OrderedDict([('x', 1), ('y', 2)])) self.assertIsNot(d, asdict(c, dict_factory=OrderedDict)) c.x = 42 d = asdict(c, dict_factory=OrderedDict) self.assertEqual(d, OrderedDict([('x', 42), ('y', 2)])) self.assertIs(type(d), OrderedDict) def test_helper_asdict_namedtuple(self): T = namedtuple('T', 'a b c') @dataclass class C: x: str y: T c = C('outer', T(1, C('inner', T(11, 12, 13)), 2)) d = asdict(c) self.assertEqual(d, {'x': 'outer', 'y': T(1, {'x': 'inner', 'y': T(11, 12, 13)}, 2), } ) # Now with a dict_factory. OrderedDict is convenient, but # since it compares to dicts, we also need to have separate # assertIs tests. d = asdict(c, dict_factory=OrderedDict) self.assertEqual(d, {'x': 'outer', 'y': T(1, {'x': 'inner', 'y': T(11, 12, 13)}, 2), } ) # Make sure that the returned dicts are actually OrderedDicts. self.assertIs(type(d), OrderedDict) self.assertIs(type(d['y'][1]), OrderedDict) def test_helper_asdict_namedtuple_key(self): # Ensure that a field that contains a dict which has a # namedtuple as a key works with asdict(). @dataclass class C: f: dict T = namedtuple('T', 'a') c = C({T('an a'): 0}) self.assertEqual(asdict(c), {'f': {T(a='an a'): 0}}) def test_helper_asdict_namedtuple_derived(self): class T(namedtuple('Tbase', 'a')): def my_a(self): return self.a @dataclass class C: f: T t = T(6) c = C(t) d = asdict(c) self.assertEqual(d, {'f': T(a=6)}) # Make sure that t has been copied, not used directly. self.assertIsNot(d['f'], t) self.assertEqual(d['f'].my_a(), 6) def test_helper_astuple(self): # Basic tests for astuple(), it should return a new tuple. @dataclass class C: x: int y: int = 0 c = C(1) self.assertEqual(astuple(c), (1, 0)) self.assertEqual(astuple(c), astuple(c)) self.assertIsNot(astuple(c), astuple(c)) c.y = 42 self.assertEqual(astuple(c), (1, 42)) self.assertIs(type(astuple(c)), tuple) def test_helper_astuple_raises_on_classes(self): # astuple() should raise on a class object. @dataclass class C: x: int y: int with self.assertRaisesRegex(TypeError, 'dataclass instance'): astuple(C) with self.assertRaisesRegex(TypeError, 'dataclass instance'): astuple(int) def test_helper_astuple_copy_values(self): @dataclass class C: x: int y: List[int] = field(default_factory=list) initial = [] c = C(1, initial) t = astuple(c) self.assertEqual(t[1], initial) self.assertIsNot(t[1], initial) c = C(1) t = astuple(c) t[1].append(1) self.assertEqual(c.y, []) def test_helper_astuple_nested(self): @dataclass class UserId: token: int group: int @dataclass class User: name: str id: UserId u = User('Joe', UserId(123, 1)) t = astuple(u) self.assertEqual(t, ('Joe', (123, 1))) self.assertIsNot(astuple(u), astuple(u)) u.id.group = 2 self.assertEqual(astuple(u), ('Joe', (123, 2))) def test_helper_astuple_builtin_containers(self): @dataclass class User: name: str id: int @dataclass class GroupList: id: int users: List[User] @dataclass class GroupTuple: id: int users: Tuple[User, ...] @dataclass class GroupDict: id: int users: Dict[str, User] a = User('Alice', 1) b = User('Bob', 2) gl = GroupList(0, [a, b]) gt = GroupTuple(0, (a, b)) gd = GroupDict(0, {'first': a, 'second': b}) self.assertEqual(astuple(gl), (0, [('Alice', 1), ('Bob', 2)])) self.assertEqual(astuple(gt), (0, (('Alice', 1), ('Bob', 2)))) self.assertEqual(astuple(gd), (0, {'first': ('Alice', 1), 'second': ('Bob', 2)})) def test_helper_astuple_builtin_object_containers(self): @dataclass class Child: d: object @dataclass class Parent: child: Child self.assertEqual(astuple(Parent(Child([1]))), (([1],),)) self.assertEqual(astuple(Parent(Child({1: 2}))), (({1: 2},),)) def test_helper_astuple_factory(self): @dataclass class C: x: int y: int NT = namedtuple('NT', 'x y') def nt(lst): return NT(*lst) c = C(1, 2) t = astuple(c, tuple_factory=nt) self.assertEqual(t, NT(1, 2)) self.assertIsNot(t, astuple(c, tuple_factory=nt)) c.x = 42 t = astuple(c, tuple_factory=nt) self.assertEqual(t, NT(42, 2)) self.assertIs(type(t), NT) def test_helper_astuple_namedtuple(self): T = namedtuple('T', 'a b c') @dataclass class C: x: str y: T c = C('outer', T(1, C('inner', T(11, 12, 13)), 2)) t = astuple(c) self.assertEqual(t, ('outer', T(1, ('inner', (11, 12, 13)), 2))) # Now, using a tuple_factory. list is convenient here. t = astuple(c, tuple_factory=list) self.assertEqual(t, ['outer', T(1, ['inner', T(11, 12, 13)], 2)]) def test_dynamic_class_creation(self): cls_dict = {'__annotations__': {'x': int, 'y': int}, } # Create the class. cls = type('C', (), cls_dict) # Make it a dataclass. cls1 = dataclass(cls) self.assertEqual(cls1, cls) self.assertEqual(asdict(cls(1, 2)), {'x': 1, 'y': 2}) def test_dynamic_class_creation_using_field(self): cls_dict = {'__annotations__': {'x': int, 'y': int}, 'y': field(default=5), } # Create the class. cls = type('C', (), cls_dict) # Make it a dataclass. cls1 = dataclass(cls) self.assertEqual(cls1, cls) self.assertEqual(asdict(cls1(1)), {'x': 1, 'y': 5}) def test_init_in_order(self): @dataclass class C: a: int b: int = field() c: list = field(default_factory=list, init=False) d: list = field(default_factory=list) e: int = field(default=4, init=False) f: int = 4 calls = [] def setattr(self, name, value): calls.append((name, value)) C.__setattr__ = setattr c = C(0, 1) self.assertEqual(('a', 0), calls[0]) self.assertEqual(('b', 1), calls[1]) self.assertEqual(('c', []), calls[2]) self.assertEqual(('d', []), calls[3]) self.assertNotIn(('e', 4), calls) self.assertEqual(('f', 4), calls[4]) def test_items_in_dicts(self): @dataclass class C: a: int b: list = field(default_factory=list, init=False) c: list = field(default_factory=list) d: int = field(default=4, init=False) e: int = 0 c = C(0) # Class dict self.assertNotIn('a', C.__dict__) self.assertNotIn('b', C.__dict__) self.assertNotIn('c', C.__dict__) self.assertIn('d', C.__dict__) self.assertEqual(C.d, 4) self.assertIn('e', C.__dict__) self.assertEqual(C.e, 0) # Instance dict self.assertIn('a', c.__dict__) self.assertEqual(c.a, 0) self.assertIn('b', c.__dict__) self.assertEqual(c.b, []) self.assertIn('c', c.__dict__) self.assertEqual(c.c, []) self.assertNotIn('d', c.__dict__) self.assertIn('e', c.__dict__) self.assertEqual(c.e, 0) def test_alternate_classmethod_constructor(self): # Since __post_init__ can't take params, use a classmethod # alternate constructor. This is mostly an example to show # how to use this technique. @dataclass class C: x: int @classmethod def from_file(cls, filename): # In a real example, create a new instance # and populate 'x' from contents of a file. value_in_file = 20 return cls(value_in_file) self.assertEqual(C.from_file('filename').x, 20) def test_field_metadata_default(self): # Make sure the default metadata is read-only and of # zero length. @dataclass class C: i: int self.assertFalse(fields(C)[0].metadata) self.assertEqual(len(fields(C)[0].metadata), 0) with self.assertRaisesRegex(TypeError, 'does not support item assignment'): fields(C)[0].metadata['test'] = 3 def test_field_metadata_mapping(self): # Make sure only a mapping can be passed as metadata # zero length. with self.assertRaises(TypeError): @dataclass class C: i: int = field(metadata=0) # Make sure an empty dict works. d = {} @dataclass class C: i: int = field(metadata=d) self.assertFalse(fields(C)[0].metadata) self.assertEqual(len(fields(C)[0].metadata), 0) # Update should work (see bpo-35960). d['foo'] = 1 self.assertEqual(len(fields(C)[0].metadata), 1) self.assertEqual(fields(C)[0].metadata['foo'], 1) with self.assertRaisesRegex(TypeError, 'does not support item assignment'): fields(C)[0].metadata['test'] = 3 # Make sure a non-empty dict works. d = {'test': 10, 'bar': '42', 3: 'three'} @dataclass class C: i: int = field(metadata=d) self.assertEqual(len(fields(C)[0].metadata), 3) self.assertEqual(fields(C)[0].metadata['test'], 10) self.assertEqual(fields(C)[0].metadata['bar'], '42') self.assertEqual(fields(C)[0].metadata[3], 'three') # Update should work. d['foo'] = 1 self.assertEqual(len(fields(C)[0].metadata), 4) self.assertEqual(fields(C)[0].metadata['foo'], 1) with self.assertRaises(KeyError): # Non-existent key. fields(C)[0].metadata['baz'] with self.assertRaisesRegex(TypeError, 'does not support item assignment'): fields(C)[0].metadata['test'] = 3 def test_field_metadata_custom_mapping(self): # Try a custom mapping. class SimpleNameSpace: def __init__(self, **kw): self.__dict__.update(kw) def __getitem__(self, item): if item == 'xyzzy': return 'plugh' return getattr(self, item) def __len__(self): return self.__dict__.__len__() @dataclass class C: i: int = field(metadata=SimpleNameSpace(a=10)) self.assertEqual(len(fields(C)[0].metadata), 1) self.assertEqual(fields(C)[0].metadata['a'], 10) with self.assertRaises(AttributeError): fields(C)[0].metadata['b'] # Make sure we're still talking to our custom mapping. self.assertEqual(fields(C)[0].metadata['xyzzy'], 'plugh') def test_generic_dataclasses(self): T = TypeVar('T') @dataclass class LabeledBox(Generic[T]): content: T label: str = '' box = LabeledBox(42) self.assertEqual(box.content, 42) self.assertEqual(box.label, '') # Subscripting the resulting class should work, etc. Alias = List[LabeledBox[int]] def test_generic_extending(self): S = TypeVar('S') T = TypeVar('T') @dataclass class Base(Generic[T, S]): x: T y: S @dataclass class DataDerived(Base[int, T]): new_field: str Alias = DataDerived[str] c = Alias(0, 'test1', 'test2') self.assertEqual(astuple(c), (0, 'test1', 'test2')) class NonDataDerived(Base[int, T]): def new_method(self): return self.y Alias = NonDataDerived[float] c = Alias(10, 1.0) self.assertEqual(c.new_method(), 1.0) def test_generic_dynamic(self): T = TypeVar('T') @dataclass class Parent(Generic[T]): x: T Child = make_dataclass('Child', [('y', T), ('z', Optional[T], None)], bases=(Parent[int], Generic[T]), namespace={'other': 42}) self.assertIs(Child[int](1, 2).z, None) self.assertEqual(Child[int](1, 2, 3).z, 3) self.assertEqual(Child[int](1, 2, 3).other, 42) # Check that type aliases work correctly. Alias = Child[T] self.assertEqual(Alias[int](1, 2).x, 1) # Check MRO resolution. self.assertEqual(Child.__mro__, (Child, Parent, Generic, object)) def test_dataclassses_pickleable(self): global P, Q, R @dataclass class P: x: int y: int = 0 @dataclass class Q: x: int y: int = field(default=0, init=False) @dataclass class R: x: int y: List[int] = field(default_factory=list) q = Q(1) q.y = 2 samples = [P(1), P(1, 2), Q(1), q, R(1), R(1, [2, 3, 4])] for sample in samples: for proto in range(pickle.HIGHEST_PROTOCOL + 1): with self.subTest(sample=sample, proto=proto): new_sample = pickle.loads(pickle.dumps(sample, proto)) self.assertEqual(sample.x, new_sample.x) self.assertEqual(sample.y, new_sample.y) self.assertIsNot(sample, new_sample) new_sample.x = 42 another_new_sample = pickle.loads(pickle.dumps(new_sample, proto)) self.assertEqual(new_sample.x, another_new_sample.x) self.assertEqual(sample.y, another_new_sample.y) class TestFieldNoAnnotation(unittest.TestCase): def test_field_without_annotation(self): with self.assertRaisesRegex(TypeError, "'f' is a field but has no type annotation"): @dataclass class C: f = field() def test_field_without_annotation_but_annotation_in_base(self): @dataclass class B: f: int with self.assertRaisesRegex(TypeError, "'f' is a field but has no type annotation"): # This is still an error: make sure we don't pick up the # type annotation in the base class. @dataclass class C(B): f = field() def test_field_without_annotation_but_annotation_in_base_not_dataclass(self): # Same test, but with the base class not a dataclass. class B: f: int with self.assertRaisesRegex(TypeError, "'f' is a field but has no type annotation"): # This is still an error: make sure we don't pick up the # type annotation in the base class. @dataclass class C(B): f = field() class TestDocString(unittest.TestCase): def assertDocStrEqual(self, a, b): # Because 3.6 and 3.7 differ in how inspect.signature work # (see bpo #32108), for the time being just compare them with # whitespace stripped. self.assertEqual(a.replace(' ', ''), b.replace(' ', '')) def test_existing_docstring_not_overridden(self): @dataclass class C: """Lorem ipsum""" x: int self.assertEqual(C.__doc__, "Lorem ipsum") def test_docstring_no_fields(self): @dataclass class C: pass self.assertDocStrEqual(C.__doc__, "C()") def test_docstring_one_field(self): @dataclass class C: x: int self.assertDocStrEqual(C.__doc__, "C(x:int)") def test_docstring_two_fields(self): @dataclass class C: x: int y: int self.assertDocStrEqual(C.__doc__, "C(x:int, y:int)") def test_docstring_three_fields(self): @dataclass class C: x: int y: int z: str self.assertDocStrEqual(C.__doc__, "C(x:int, y:int, z:str)") def test_docstring_one_field_with_default(self): @dataclass class C: x: int = 3 self.assertDocStrEqual(C.__doc__, "C(x:int=3)") def test_docstring_one_field_with_default_none(self): @dataclass class C: x: Union[int, type(None)] = None self.assertDocStrEqual(C.__doc__, "C(x:Union[int, NoneType]=None)") def test_docstring_list_field(self): @dataclass class C: x: List[int] self.assertDocStrEqual(C.__doc__, "C(x:List[int])") def test_docstring_list_field_with_default_factory(self): @dataclass class C: x: List[int] = field(default_factory=list) self.assertDocStrEqual(C.__doc__, "C(x:List[int]=)") def test_docstring_deque_field(self): @dataclass class C: x: deque self.assertDocStrEqual(C.__doc__, "C(x:collections.deque)") def test_docstring_deque_field_with_default_factory(self): @dataclass class C: x: deque = field(default_factory=deque) self.assertDocStrEqual(C.__doc__, "C(x:collections.deque=)") class TestInit(unittest.TestCase): def test_base_has_init(self): class B: def __init__(self): self.z = 100 pass # Make sure that declaring this class doesn't raise an error. # The issue is that we can't override __init__ in our class, # but it should be okay to add __init__ to us if our base has # an __init__. @dataclass class C(B): x: int = 0 c = C(10) self.assertEqual(c.x, 10) self.assertNotIn('z', vars(c)) # Make sure that if we don't add an init, the base __init__ # gets called. @dataclass(init=False) class C(B): x: int = 10 c = C() self.assertEqual(c.x, 10) self.assertEqual(c.z, 100) def test_no_init(self): dataclass(init=False) class C: i: int = 0 self.assertEqual(C().i, 0) dataclass(init=False) class C: i: int = 2 def __init__(self): self.i = 3 self.assertEqual(C().i, 3) def test_overwriting_init(self): # If the class has __init__, use it no matter the value of # init=. @dataclass class C: x: int def __init__(self, x): self.x = 2 * x self.assertEqual(C(3).x, 6) @dataclass(init=True) class C: x: int def __init__(self, x): self.x = 2 * x self.assertEqual(C(4).x, 8) @dataclass(init=False) class C: x: int def __init__(self, x): self.x = 2 * x self.assertEqual(C(5).x, 10) class TestRepr(unittest.TestCase): def test_repr(self): @dataclass class B: x: int @dataclass class C(B): y: int = 10 o = C(4) self.assertEqual(repr(o), 'TestRepr.test_repr..C(x=4, y=10)') @dataclass class D(C): x: int = 20 self.assertEqual(repr(D()), 'TestRepr.test_repr..D(x=20, y=10)') @dataclass class C: @dataclass class D: i: int @dataclass class E: pass self.assertEqual(repr(C.D(0)), 'TestRepr.test_repr..C.D(i=0)') self.assertEqual(repr(C.E()), 'TestRepr.test_repr..C.E()') def test_no_repr(self): # Test a class with no __repr__ and repr=False. @dataclass(repr=False) class C: x: int self.assertIn(f'{__name__}.TestRepr.test_no_repr..C object at', repr(C(3))) # Test a class with a __repr__ and repr=False. @dataclass(repr=False) class C: x: int def __repr__(self): return 'C-class' self.assertEqual(repr(C(3)), 'C-class') def test_overwriting_repr(self): # If the class has __repr__, use it no matter the value of # repr=. @dataclass class C: x: int def __repr__(self): return 'x' self.assertEqual(repr(C(0)), 'x') @dataclass(repr=True) class C: x: int def __repr__(self): return 'x' self.assertEqual(repr(C(0)), 'x') @dataclass(repr=False) class C: x: int def __repr__(self): return 'x' self.assertEqual(repr(C(0)), 'x') class TestEq(unittest.TestCase): def test_no_eq(self): # Test a class with no __eq__ and eq=False. @dataclass(eq=False) class C: x: int self.assertNotEqual(C(0), C(0)) c = C(3) self.assertEqual(c, c) # Test a class with an __eq__ and eq=False. @dataclass(eq=False) class C: x: int def __eq__(self, other): return other == 10 self.assertEqual(C(3), 10) def test_overwriting_eq(self): # If the class has __eq__, use it no matter the value of # eq=. @dataclass class C: x: int def __eq__(self, other): return other == 3 self.assertEqual(C(1), 3) self.assertNotEqual(C(1), 1) @dataclass(eq=True) class C: x: int def __eq__(self, other): return other == 4 self.assertEqual(C(1), 4) self.assertNotEqual(C(1), 1) @dataclass(eq=False) class C: x: int def __eq__(self, other): return other == 5 self.assertEqual(C(1), 5) self.assertNotEqual(C(1), 1) class TestOrdering(unittest.TestCase): def test_functools_total_ordering(self): # Test that functools.total_ordering works with this class. @total_ordering @dataclass class C: x: int def __lt__(self, other): # Perform the test "backward", just to make # sure this is being called. return self.x >= other self.assertLess(C(0), -1) self.assertLessEqual(C(0), -1) self.assertGreater(C(0), 1) self.assertGreaterEqual(C(0), 1) def test_no_order(self): # Test that no ordering functions are added by default. @dataclass(order=False) class C: x: int # Make sure no order methods are added. self.assertNotIn('__le__', C.__dict__) self.assertNotIn('__lt__', C.__dict__) self.assertNotIn('__ge__', C.__dict__) self.assertNotIn('__gt__', C.__dict__) # Test that __lt__ is still called @dataclass(order=False) class C: x: int def __lt__(self, other): return False # Make sure other methods aren't added. self.assertNotIn('__le__', C.__dict__) self.assertNotIn('__ge__', C.__dict__) self.assertNotIn('__gt__', C.__dict__) def test_overwriting_order(self): with self.assertRaisesRegex(TypeError, 'Cannot overwrite attribute __lt__' '.*using functools.total_ordering'): @dataclass(order=True) class C: x: int def __lt__(self): pass with self.assertRaisesRegex(TypeError, 'Cannot overwrite attribute __le__' '.*using functools.total_ordering'): @dataclass(order=True) class C: x: int def __le__(self): pass with self.assertRaisesRegex(TypeError, 'Cannot overwrite attribute __gt__' '.*using functools.total_ordering'): @dataclass(order=True) class C: x: int def __gt__(self): pass with self.assertRaisesRegex(TypeError, 'Cannot overwrite attribute __ge__' '.*using functools.total_ordering'): @dataclass(order=True) class C: x: int def __ge__(self): pass class TestHash(unittest.TestCase): def test_unsafe_hash(self): @dataclass(unsafe_hash=True) class C: x: int y: str self.assertEqual(hash(C(1, 'foo')), hash((1, 'foo'))) def test_hash_rules(self): def non_bool(value): # Map to something else that's True, but not a bool. if value is None: return None if value: return (3,) return 0 def test(case, unsafe_hash, eq, frozen, with_hash, result): with self.subTest(case=case, unsafe_hash=unsafe_hash, eq=eq, frozen=frozen): if result != 'exception': if with_hash: @dataclass(unsafe_hash=unsafe_hash, eq=eq, frozen=frozen) class C: def __hash__(self): return 0 else: @dataclass(unsafe_hash=unsafe_hash, eq=eq, frozen=frozen) class C: pass # See if the result matches what's expected. if result == 'fn': # __hash__ contains the function we generated. self.assertIn('__hash__', C.__dict__) self.assertIsNotNone(C.__dict__['__hash__']) elif result == '': # __hash__ is not present in our class. if not with_hash: self.assertNotIn('__hash__', C.__dict__) elif result == 'none': # __hash__ is set to None. self.assertIn('__hash__', C.__dict__) self.assertIsNone(C.__dict__['__hash__']) elif result == 'exception': # Creating the class should cause an exception. # This only happens with with_hash==True. assert(with_hash) with self.assertRaisesRegex(TypeError, 'Cannot overwrite attribute __hash__'): @dataclass(unsafe_hash=unsafe_hash, eq=eq, frozen=frozen) class C: def __hash__(self): return 0 else: assert False, f'unknown result {result!r}' # There are 8 cases of: # unsafe_hash=True/False # eq=True/False # frozen=True/False # And for each of these, a different result if # __hash__ is defined or not. for case, (unsafe_hash, eq, frozen, res_no_defined_hash, res_defined_hash) in enumerate([ (False, False, False, '', ''), (False, False, True, '', ''), (False, True, False, 'none', ''), (False, True, True, 'fn', ''), (True, False, False, 'fn', 'exception'), (True, False, True, 'fn', 'exception'), (True, True, False, 'fn', 'exception'), (True, True, True, 'fn', 'exception'), ], 1): test(case, unsafe_hash, eq, frozen, False, res_no_defined_hash) test(case, unsafe_hash, eq, frozen, True, res_defined_hash) # Test non-bool truth values, too. This is just to # make sure the data-driven table in the decorator # handles non-bool values. test(case, non_bool(unsafe_hash), non_bool(eq), non_bool(frozen), False, res_no_defined_hash) test(case, non_bool(unsafe_hash), non_bool(eq), non_bool(frozen), True, res_defined_hash) def test_eq_only(self): # If a class defines __eq__, __hash__ is automatically added # and set to None. This is normal Python behavior, not # related to dataclasses. Make sure we don't interfere with # that (see bpo=32546). @dataclass class C: i: int def __eq__(self, other): return self.i == other.i self.assertEqual(C(1), C(1)) self.assertNotEqual(C(1), C(4)) # And make sure things work in this case if we specify # unsafe_hash=True. @dataclass(unsafe_hash=True) class C: i: int def __eq__(self, other): return self.i == other.i self.assertEqual(C(1), C(1.0)) self.assertEqual(hash(C(1)), hash(C(1.0))) # And check that the classes __eq__ is being used, despite # specifying eq=True. @dataclass(unsafe_hash=True, eq=True) class C: i: int def __eq__(self, other): return self.i == 3 and self.i == other.i self.assertEqual(C(3), C(3)) self.assertNotEqual(C(1), C(1)) self.assertEqual(hash(C(1)), hash(C(1.0))) def test_0_field_hash(self): @dataclass(frozen=True) class C: pass self.assertEqual(hash(C()), hash(())) @dataclass(unsafe_hash=True) class C: pass self.assertEqual(hash(C()), hash(())) def test_1_field_hash(self): @dataclass(frozen=True) class C: x: int self.assertEqual(hash(C(4)), hash((4,))) self.assertEqual(hash(C(42)), hash((42,))) @dataclass(unsafe_hash=True) class C: x: int self.assertEqual(hash(C(4)), hash((4,))) self.assertEqual(hash(C(42)), hash((42,))) def test_hash_no_args(self): # Test dataclasses with no hash= argument. This exists to # make sure that if the @dataclass parameter name is changed # or the non-default hashing behavior changes, the default # hashability keeps working the same way. class Base: def __hash__(self): return 301 # If frozen or eq is None, then use the default value (do not # specify any value in the decorator). for frozen, eq, base, expected in [ (None, None, object, 'unhashable'), (None, None, Base, 'unhashable'), (None, False, object, 'object'), (None, False, Base, 'base'), (None, True, object, 'unhashable'), (None, True, Base, 'unhashable'), (False, None, object, 'unhashable'), (False, None, Base, 'unhashable'), (False, False, object, 'object'), (False, False, Base, 'base'), (False, True, object, 'unhashable'), (False, True, Base, 'unhashable'), (True, None, object, 'tuple'), (True, None, Base, 'tuple'), (True, False, object, 'object'), (True, False, Base, 'base'), (True, True, object, 'tuple'), (True, True, Base, 'tuple'), ]: with self.subTest(frozen=frozen, eq=eq, base=base, expected=expected): # First, create the class. if frozen is None and eq is None: @dataclass class C(base): i: int elif frozen is None: @dataclass(eq=eq) class C(base): i: int elif eq is None: @dataclass(frozen=frozen) class C(base): i: int else: @dataclass(frozen=frozen, eq=eq) class C(base): i: int # Now, make sure it hashes as expected. if expected == 'unhashable': c = C(10) with self.assertRaisesRegex(TypeError, 'unhashable type'): hash(c) elif expected == 'base': self.assertEqual(hash(C(10)), 301) elif expected == 'object': # I'm not sure what test to use here. object's # hash isn't based on id(), so calling hash() # won't tell us much. So, just check the # function used is object's. self.assertIs(C.__hash__, object.__hash__) elif expected == 'tuple': self.assertEqual(hash(C(42)), hash((42,))) else: assert False, f'unknown value for expected={expected!r}' class TestFrozen(unittest.TestCase): def test_frozen(self): @dataclass(frozen=True) class C: i: int c = C(10) self.assertEqual(c.i, 10) with self.assertRaises(FrozenInstanceError): c.i = 5 self.assertEqual(c.i, 10) def test_inherit(self): @dataclass(frozen=True) class C: i: int @dataclass(frozen=True) class D(C): j: int d = D(0, 10) with self.assertRaises(FrozenInstanceError): d.i = 5 with self.assertRaises(FrozenInstanceError): d.j = 6 self.assertEqual(d.i, 0) self.assertEqual(d.j, 10) def test_inherit_nonfrozen_from_empty_frozen(self): @dataclass(frozen=True) class C: pass with self.assertRaisesRegex(TypeError, 'cannot inherit non-frozen dataclass from a frozen one'): @dataclass class D(C): j: int def test_inherit_nonfrozen_from_empty(self): @dataclass class C: pass @dataclass class D(C): j: int d = D(3) self.assertEqual(d.j, 3) self.assertIsInstance(d, C) # Test both ways: with an intermediate normal (non-dataclass) # class and without an intermediate class. def test_inherit_nonfrozen_from_frozen(self): for intermediate_class in [True, False]: with self.subTest(intermediate_class=intermediate_class): @dataclass(frozen=True) class C: i: int if intermediate_class: class I(C): pass else: I = C with self.assertRaisesRegex(TypeError, 'cannot inherit non-frozen dataclass from a frozen one'): @dataclass class D(I): pass def test_inherit_frozen_from_nonfrozen(self): for intermediate_class in [True, False]: with self.subTest(intermediate_class=intermediate_class): @dataclass class C: i: int if intermediate_class: class I(C): pass else: I = C with self.assertRaisesRegex(TypeError, 'cannot inherit frozen dataclass from a non-frozen one'): @dataclass(frozen=True) class D(I): pass def test_inherit_from_normal_class(self): for intermediate_class in [True, False]: with self.subTest(intermediate_class=intermediate_class): class C: pass if intermediate_class: class I(C): pass else: I = C @dataclass(frozen=True) class D(I): i: int d = D(10) with self.assertRaises(FrozenInstanceError): d.i = 5 def test_non_frozen_normal_derived(self): # See bpo-32953. @dataclass(frozen=True) class D: x: int y: int = 10 class S(D): pass s = S(3) self.assertEqual(s.x, 3) self.assertEqual(s.y, 10) s.cached = True # But can't change the frozen attributes. with self.assertRaises(FrozenInstanceError): s.x = 5 with self.assertRaises(FrozenInstanceError): s.y = 5 self.assertEqual(s.x, 3) self.assertEqual(s.y, 10) self.assertEqual(s.cached, True) def test_overwriting_frozen(self): # frozen uses __setattr__ and __delattr__. with self.assertRaisesRegex(TypeError, 'Cannot overwrite attribute __setattr__'): @dataclass(frozen=True) class C: x: int def __setattr__(self): pass with self.assertRaisesRegex(TypeError, 'Cannot overwrite attribute __delattr__'): @dataclass(frozen=True) class C: x: int def __delattr__(self): pass @dataclass(frozen=False) class C: x: int def __setattr__(self, name, value): self.__dict__['x'] = value * 2 self.assertEqual(C(10).x, 20) def test_frozen_hash(self): @dataclass(frozen=True) class C: x: Any # If x is immutable, we can compute the hash. No exception is # raised. hash(C(3)) # If x is mutable, computing the hash is an error. with self.assertRaisesRegex(TypeError, 'unhashable type'): hash(C({})) class TestSlots(unittest.TestCase): def test_simple(self): @dataclass class C: __slots__ = ('x',) x: Any # There was a bug where a variable in a slot was assumed to # also have a default value (of type # types.MemberDescriptorType). with self.assertRaisesRegex(TypeError, r"__init__\(\) missing 1 required positional argument: 'x'"): C() # We can create an instance, and assign to x. c = C(10) self.assertEqual(c.x, 10) c.x = 5 self.assertEqual(c.x, 5) # We can't assign to anything else. with self.assertRaisesRegex(AttributeError, "'C' object has no attribute 'y'"): c.y = 5 def test_derived_added_field(self): # See bpo-33100. @dataclass class Base: __slots__ = ('x',) x: Any @dataclass class Derived(Base): x: int y: int d = Derived(1, 2) self.assertEqual((d.x, d.y), (1, 2)) # We can add a new field to the derived instance. d.z = 10 class TestDescriptors(unittest.TestCase): def test_set_name(self): # See bpo-33141. # Create a descriptor. class D: def __set_name__(self, owner, name): self.name = name + 'x' def __get__(self, instance, owner): if instance is not None: return 1 return self # This is the case of just normal descriptor behavior, no # dataclass code is involved in initializing the descriptor. @dataclass class C: c: int=D() self.assertEqual(C.c.name, 'cx') # Now test with a default value and init=False, which is the # only time this is really meaningful. If not using # init=False, then the descriptor will be overwritten, anyway. @dataclass class C: c: int=field(default=D(), init=False) self.assertEqual(C.c.name, 'cx') self.assertEqual(C().c, 1) def test_non_descriptor(self): # PEP 487 says __set_name__ should work on non-descriptors. # Create a descriptor. class D: def __set_name__(self, owner, name): self.name = name + 'x' @dataclass class C: c: int=field(default=D(), init=False) self.assertEqual(C.c.name, 'cx') def test_lookup_on_instance(self): # See bpo-33175. class D: pass d = D() # Create an attribute on the instance, not type. d.__set_name__ = Mock() # Make sure d.__set_name__ is not called. @dataclass class C: i: int=field(default=d, init=False) self.assertEqual(d.__set_name__.call_count, 0) def test_lookup_on_class(self): # See bpo-33175. class D: pass D.__set_name__ = Mock() # Make sure D.__set_name__ is called. @dataclass class C: i: int=field(default=D(), init=False) self.assertEqual(D.__set_name__.call_count, 1) class TestStringAnnotations(unittest.TestCase): def test_classvar(self): # Some expressions recognized as ClassVar really aren't. But # if you're using string annotations, it's not an exact # science. # These tests assume that both "import typing" and "from # typing import *" have been run in this file. for typestr in ('ClassVar[int]', 'ClassVar [int]' ' ClassVar [int]', 'ClassVar', ' ClassVar ', 'typing.ClassVar[int]', 'typing.ClassVar[str]', ' typing.ClassVar[str]', 'typing .ClassVar[str]', 'typing. ClassVar[str]', 'typing.ClassVar [str]', 'typing.ClassVar [ str]', # Not syntactically valid, but these will # be treated as ClassVars. 'typing.ClassVar.[int]', 'typing.ClassVar+', ): with self.subTest(typestr=typestr): @dataclass class C: x: typestr # x is a ClassVar, so C() takes no args. C() # And it won't appear in the class's dict because it doesn't # have a default. self.assertNotIn('x', C.__dict__) def test_isnt_classvar(self): for typestr in ('CV', 't.ClassVar', 't.ClassVar[int]', 'typing..ClassVar[int]', 'Classvar', 'Classvar[int]', 'typing.ClassVarx[int]', 'typong.ClassVar[int]', 'dataclasses.ClassVar[int]', 'typingxClassVar[str]', ): with self.subTest(typestr=typestr): @dataclass class C: x: typestr # x is not a ClassVar, so C() takes one arg. self.assertEqual(C(10).x, 10) def test_initvar(self): # These tests assume that both "import dataclasses" and "from # dataclasses import *" have been run in this file. for typestr in ('InitVar[int]', 'InitVar [int]' ' InitVar [int]', 'InitVar', ' InitVar ', 'dataclasses.InitVar[int]', 'dataclasses.InitVar[str]', ' dataclasses.InitVar[str]', 'dataclasses .InitVar[str]', 'dataclasses. InitVar[str]', 'dataclasses.InitVar [str]', 'dataclasses.InitVar [ str]', # Not syntactically valid, but these will # be treated as InitVars. 'dataclasses.InitVar.[int]', 'dataclasses.InitVar+', ): with self.subTest(typestr=typestr): @dataclass class C: x: typestr # x is an InitVar, so doesn't create a member. with self.assertRaisesRegex(AttributeError, "object has no attribute 'x'"): C(1).x def test_isnt_initvar(self): for typestr in ('IV', 'dc.InitVar', 'xdataclasses.xInitVar', 'typing.xInitVar[int]', ): with self.subTest(typestr=typestr): @dataclass class C: x: typestr # x is not an InitVar, so there will be a member x. self.assertEqual(C(10).x, 10) def test_classvar_module_level_import(self): from test import dataclass_module_1 from test import dataclass_module_1_str from test import dataclass_module_2 from test import dataclass_module_2_str for m in (dataclass_module_1, dataclass_module_1_str, dataclass_module_2, dataclass_module_2_str, ): with self.subTest(m=m): # There's a difference in how the ClassVars are # interpreted when using string annotations or # not. See the imported modules for details. if m.USING_STRINGS: c = m.CV(10) else: c = m.CV() self.assertEqual(c.cv0, 20) # There's a difference in how the InitVars are # interpreted when using string annotations or # not. See the imported modules for details. c = m.IV(0, 1, 2, 3, 4) for field_name in ('iv0', 'iv1', 'iv2', 'iv3'): with self.subTest(field_name=field_name): with self.assertRaisesRegex(AttributeError, f"object has no attribute '{field_name}'"): # Since field_name is an InitVar, it's # not an instance field. getattr(c, field_name) if m.USING_STRINGS: # iv4 is interpreted as a normal field. self.assertIn('not_iv4', c.__dict__) self.assertEqual(c.not_iv4, 4) else: # iv4 is interpreted as an InitVar, so it # won't exist on the instance. self.assertNotIn('not_iv4', c.__dict__) def test_text_annotations(self): from test import dataclass_textanno self.assertEqual( get_type_hints(dataclass_textanno.Bar), {'foo': dataclass_textanno.Foo}) self.assertEqual( get_type_hints(dataclass_textanno.Bar.__init__), {'foo': dataclass_textanno.Foo, 'return': type(None)}) class TestMakeDataclass(unittest.TestCase): def test_simple(self): C = make_dataclass('C', [('x', int), ('y', int, field(default=5))], namespace={'add_one': lambda self: self.x + 1}) c = C(10) self.assertEqual((c.x, c.y), (10, 5)) self.assertEqual(c.add_one(), 11) def test_no_mutate_namespace(self): # Make sure a provided namespace isn't mutated. ns = {} C = make_dataclass('C', [('x', int), ('y', int, field(default=5))], namespace=ns) self.assertEqual(ns, {}) def test_base(self): class Base1: pass class Base2: pass C = make_dataclass('C', [('x', int)], bases=(Base1, Base2)) c = C(2) self.assertIsInstance(c, C) self.assertIsInstance(c, Base1) self.assertIsInstance(c, Base2) def test_base_dataclass(self): @dataclass class Base1: x: int class Base2: pass C = make_dataclass('C', [('y', int)], bases=(Base1, Base2)) with self.assertRaisesRegex(TypeError, 'required positional'): c = C(2) c = C(1, 2) self.assertIsInstance(c, C) self.assertIsInstance(c, Base1) self.assertIsInstance(c, Base2) self.assertEqual((c.x, c.y), (1, 2)) def test_init_var(self): def post_init(self, y): self.x *= y C = make_dataclass('C', [('x', int), ('y', InitVar[int]), ], namespace={'__post_init__': post_init}, ) c = C(2, 3) self.assertEqual(vars(c), {'x': 6}) self.assertEqual(len(fields(c)), 1) def test_class_var(self): C = make_dataclass('C', [('x', int), ('y', ClassVar[int], 10), ('z', ClassVar[int], field(default=20)), ]) c = C(1) self.assertEqual(vars(c), {'x': 1}) self.assertEqual(len(fields(c)), 1) self.assertEqual(C.y, 10) self.assertEqual(C.z, 20) def test_other_params(self): C = make_dataclass('C', [('x', int), ('y', ClassVar[int], 10), ('z', ClassVar[int], field(default=20)), ], init=False) # Make sure we have a repr, but no init. self.assertNotIn('__init__', vars(C)) self.assertIn('__repr__', vars(C)) # Make sure random other params don't work. with self.assertRaisesRegex(TypeError, 'unexpected keyword argument'): C = make_dataclass('C', [], xxinit=False) def test_no_types(self): C = make_dataclass('Point', ['x', 'y', 'z']) c = C(1, 2, 3) self.assertEqual(vars(c), {'x': 1, 'y': 2, 'z': 3}) self.assertEqual(C.__annotations__, {'x': 'typing.Any', 'y': 'typing.Any', 'z': 'typing.Any'}) C = make_dataclass('Point', ['x', ('y', int), 'z']) c = C(1, 2, 3) self.assertEqual(vars(c), {'x': 1, 'y': 2, 'z': 3}) self.assertEqual(C.__annotations__, {'x': 'typing.Any', 'y': int, 'z': 'typing.Any'}) def test_invalid_type_specification(self): for bad_field in [(), (1, 2, 3, 4), ]: with self.subTest(bad_field=bad_field): with self.assertRaisesRegex(TypeError, r'Invalid field: '): make_dataclass('C', ['a', bad_field]) # And test for things with no len(). for bad_field in [float, lambda x:x, ]: with self.subTest(bad_field=bad_field): with self.assertRaisesRegex(TypeError, r'has no len\(\)'): make_dataclass('C', ['a', bad_field]) def test_duplicate_field_names(self): for field in ['a', 'ab']: with self.subTest(field=field): with self.assertRaisesRegex(TypeError, 'Field name duplicated'): make_dataclass('C', [field, 'a', field]) def test_keyword_field_names(self): for field in ['for', 'async', 'await', 'as']: with self.subTest(field=field): with self.assertRaisesRegex(TypeError, 'must not be keywords'): make_dataclass('C', ['a', field]) with self.assertRaisesRegex(TypeError, 'must not be keywords'): make_dataclass('C', [field]) with self.assertRaisesRegex(TypeError, 'must not be keywords'): make_dataclass('C', [field, 'a']) def test_non_identifier_field_names(self): for field in ['()', 'x,y', '*', '2@3', '', 'little johnny tables']: with self.subTest(field=field): with self.assertRaisesRegex(TypeError, 'must be valid identifiers'): make_dataclass('C', ['a', field]) with self.assertRaisesRegex(TypeError, 'must be valid identifiers'): make_dataclass('C', [field]) with self.assertRaisesRegex(TypeError, 'must be valid identifiers'): make_dataclass('C', [field, 'a']) def test_underscore_field_names(self): # Unlike namedtuple, it's okay if dataclass field names have # an underscore. make_dataclass('C', ['_', '_a', 'a_a', 'a_']) def test_funny_class_names_names(self): # No reason to prevent weird class names, since # types.new_class allows them. for classname in ['()', 'x,y', '*', '2@3', '']: with self.subTest(classname=classname): C = make_dataclass(classname, ['a', 'b']) self.assertEqual(C.__name__, classname) class TestReplace(unittest.TestCase): def test(self): @dataclass(frozen=True) class C: x: int y: int c = C(1, 2) c1 = replace(c, x=3) self.assertEqual(c1.x, 3) self.assertEqual(c1.y, 2) self.assertRaises(TypeError, replace) self.assertRaises(TypeError, replace, c, c) with self.assertWarns(DeprecationWarning): c1 = replace(obj=c, x=3) self.assertEqual(c1.x, 3) self.assertEqual(c1.y, 2) def test_frozen(self): @dataclass(frozen=True) class C: x: int y: int z: int = field(init=False, default=10) t: int = field(init=False, default=100) c = C(1, 2) c1 = replace(c, x=3) self.assertEqual((c.x, c.y, c.z, c.t), (1, 2, 10, 100)) self.assertEqual((c1.x, c1.y, c1.z, c1.t), (3, 2, 10, 100)) with self.assertRaisesRegex(ValueError, 'init=False'): replace(c, x=3, z=20, t=50) with self.assertRaisesRegex(ValueError, 'init=False'): replace(c, z=20) replace(c, x=3, z=20, t=50) # Make sure the result is still frozen. with self.assertRaisesRegex(FrozenInstanceError, "cannot assign to field 'x'"): c1.x = 3 # Make sure we can't replace an attribute that doesn't exist, # if we're also replacing one that does exist. Test this # here, because setting attributes on frozen instances is # handled slightly differently from non-frozen ones. with self.assertRaisesRegex(TypeError, r"__init__\(\) got an unexpected " "keyword argument 'a'"): c1 = replace(c, x=20, a=5) def test_invalid_field_name(self): @dataclass(frozen=True) class C: x: int y: int c = C(1, 2) with self.assertRaisesRegex(TypeError, r"__init__\(\) got an unexpected " "keyword argument 'z'"): c1 = replace(c, z=3) def test_invalid_object(self): @dataclass(frozen=True) class C: x: int y: int with self.assertRaisesRegex(TypeError, 'dataclass instance'): replace(C, x=3) with self.assertRaisesRegex(TypeError, 'dataclass instance'): replace(0, x=3) def test_no_init(self): @dataclass class C: x: int y: int = field(init=False, default=10) c = C(1) c.y = 20 # Make sure y gets the default value. c1 = replace(c, x=5) self.assertEqual((c1.x, c1.y), (5, 10)) # Trying to replace y is an error. with self.assertRaisesRegex(ValueError, 'init=False'): replace(c, x=2, y=30) with self.assertRaisesRegex(ValueError, 'init=False'): replace(c, y=30) def test_classvar(self): @dataclass class C: x: int y: ClassVar[int] = 1000 c = C(1) d = C(2) self.assertIs(c.y, d.y) self.assertEqual(c.y, 1000) # Trying to replace y is an error: can't replace ClassVars. with self.assertRaisesRegex(TypeError, r"__init__\(\) got an " "unexpected keyword argument 'y'"): replace(c, y=30) replace(c, x=5) def test_initvar_is_specified(self): @dataclass class C: x: int y: InitVar[int] def __post_init__(self, y): self.x *= y c = C(1, 10) self.assertEqual(c.x, 10) with self.assertRaisesRegex(ValueError, r"InitVar 'y' must be " "specified with replace()"): replace(c, x=3) c = replace(c, x=3, y=5) self.assertEqual(c.x, 15) def test_initvar_with_default_value(self): @dataclass class C: x: int y: InitVar[int] = None z: InitVar[int] = 42 def __post_init__(self, y, z): if y is not None: self.x += y if z is not None: self.x += z c = C(x=1, y=10, z=1) self.assertEqual(replace(c), C(x=12)) self.assertEqual(replace(c, y=4), C(x=12, y=4, z=42)) self.assertEqual(replace(c, y=4, z=1), C(x=12, y=4, z=1)) def test_recursive_repr(self): @dataclass class C: f: "C" c = C(None) c.f = c self.assertEqual(repr(c), "TestReplace.test_recursive_repr..C(f=...)") def test_recursive_repr_two_attrs(self): @dataclass class C: f: "C" g: "C" c = C(None, None) c.f = c c.g = c self.assertEqual(repr(c), "TestReplace.test_recursive_repr_two_attrs" "..C(f=..., g=...)") def test_recursive_repr_indirection(self): @dataclass class C: f: "D" @dataclass class D: f: "C" c = C(None) d = D(None) c.f = d d.f = c self.assertEqual(repr(c), "TestReplace.test_recursive_repr_indirection" "..C(f=TestReplace.test_recursive_repr_indirection" "..D(f=...))") def test_recursive_repr_indirection_two(self): @dataclass class C: f: "D" @dataclass class D: f: "E" @dataclass class E: f: "C" c = C(None) d = D(None) e = E(None) c.f = d d.f = e e.f = c self.assertEqual(repr(c), "TestReplace.test_recursive_repr_indirection_two" "..C(f=TestReplace.test_recursive_repr_indirection_two" "..D(f=TestReplace.test_recursive_repr_indirection_two" "..E(f=...)))") def test_recursive_repr_misc_attrs(self): @dataclass class C: f: "C" g: int c = C(None, 1) c.f = c self.assertEqual(repr(c), "TestReplace.test_recursive_repr_misc_attrs" "..C(f=..., g=1)") ## def test_initvar(self): ## @dataclass ## class C: ## x: int ## y: InitVar[int] ## c = C(1, 10) ## d = C(2, 20) ## # In our case, replacing an InitVar is a no-op ## self.assertEqual(c, replace(c, y=5)) ## replace(c, x=5) if __name__ == '__main__': unittest.main()